Global classical solutions to partially dissipative quasilinear hyperbolic systems
Yi Zhou
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 771 -780.
Global classical solutions to partially dissipative quasilinear hyperbolic systems
The author considers the Cauchy problem for quasilinear inhomogeneous hyperbolic systems. Under the assumption that the system is weakly dissipative, Hanouzet and Natalini established the global existence of smooth solutions for small initial data (in Arch. Rational Mech. Anal., Vol. 169, 2003, pp. 89–117). The aim of this paper is to give a completely different proof of this result with slightly different assumptions.
Cauchy problem / Global classical solution / Partially dissipative quasilinear hyperbolic system
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
/
| 〈 |
|
〉 |