Weighted inequalities for the generalized maximal operator in martingale spaces

Wei Chen , Peide Liu

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 781 -792.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 781 -792. DOI: 10.1007/s11401-011-0665-0
Article

Weighted inequalities for the generalized maximal operator in martingale spaces

Author information +
History +
PDF

Abstract

The generalized maximal operator M in martingale spaces is considered. For 1 < pq < ∞, the authors give a necessary and sufficient condition on the pair (\hat \mu , v) for M to be a bounded operator from martingale space L p(v) into L q(\hat \mu ) or weak-L q (\hat \mu ), where \hat \mu is a measure on Ω × ℕ and v a weight on Ω. Moreover, the similar inequalities for usual maximal operator are discussed.

Keywords

Martingale / Maximal operator / Weighted inequality / Carleson measure

Cite this article

Download citation ▾
Wei Chen, Peide Liu. Weighted inequalities for the generalized maximal operator in martingale spaces. Chinese Annals of Mathematics, Series B, 2011, 32(5): 781-792 DOI:10.1007/s11401-011-0665-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Byung-Oh P.. A weak type inequality for generalized maximal operators on spaces of homogeneous type. Anal. Math., 1999, 25: 179-186

[2]

Chang X. Q.. Some Sawyer type inequalities for martingales. Studia Math., 1994, 111(2): 187-194

[3]

Cruz-Uribe D.. SFO, New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J., 2000, 7(1): 33-42

[4]

Garcia-Cuerva J., Martell J. M.. Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J., 2001, 50(3): 1241-1280

[5]

Izumisawa M., Kazamaki N.. Weighted norm inequalities for martingale. Tohoku Math. J., 1977, 29: 115-124

[6]

Jawerth B.. Weighted inequalities for maximal operators: linearization, localization and factorization. Amer. J. Math., 1986, 108: 361-414

[7]

Jiao Y.. Carleson measures and vector-valued BMO martingales. Probab. Theory Relat. Fields, 2009, 145: 421-434

[8]

Jiao Y., Fan L. P., Liu P. D.. Interpolation theorems on weighted Lorentz martingale spaces. Sci. China Ser. A, 2007, 50(9): 1217-1226

[9]

Jiao Y., Liu P. D., Peng L. H.. Interpolation for martingale Hardy spaces over weighted measure spaces. Acta Math. Hungar., 2008, 120(1–2): 127-139

[10]

Long R. L.. Martingale Spaces and Inequalities, 1993, Beijing: Peking University Press

[11]

Long R. L., Peng L. Z.. Two weighted maximal (p, q) inequalities in martingale setting (in Chinese). Acta Math. Sin., 1986, 29: 253-258

[12]

Muckenhoupt B.. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 1972, 165: 207-226

[13]

Ruiz F. J.. A unified approach to Carleson measures and Ap weights. Pacific J. Math., 1985, 117(2): 397-404

[14]

Ruiz F. J., Torrea J. L.. A unified approach to Carleson measures and Ap weights II. Pacific J. Math., 1985, 120(1): 189-197

[15]

Sawyer E. T.. Weighted norm inequalities for fractional maximal operator. C. M. S. Conf. Proc., 1981, 1: 283-309

[16]

Sawyer E. T.. A characterization of a two weight norm inequality for maximal operators. Studia Math., 1982, 75: 1-11

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/