Indecomposable Calabi-Yau objects in stable module categories of finite type

Xiaolan Yu , Jiwei He

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 793 -802.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 793 -802. DOI: 10.1007/s11401-011-0664-1
Article

Indecomposable Calabi-Yau objects in stable module categories of finite type

Author information +
History +
PDF

Abstract

The authors give a discription of the stable categories of selfinjective algebras of finite representation type over an algebraically closed field, which admits indecomposable Calabi-Yau obdjects. For selfinjective algebras with such properties, the ones whose stable categories are not Calabi-Yau are determined. For the remaining ones, i.e., those selfinjective algebras whose stable categories are actually Calabi-Yau, the difference between the Calabi-Yau dimensions of the indecomposable Calabi-Yau objects and the Calabi-Yau dimensions of the stable categories is described.

Keywords

Selfinjective algebra / Stable category / Calabi-Yau category / Indecomposable Calabi-Yau object

Cite this article

Download citation ▾
Xiaolan Yu, Jiwei He. Indecomposable Calabi-Yau objects in stable module categories of finite type. Chinese Annals of Mathematics, Series B, 2011, 32(5): 793-802 DOI:10.1007/s11401-011-0664-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asashiba H.. The derived equivalence classification of representation-finite selfinjective algebras. J. Algebra, 1999, 214: 182-221

[2]

Assem I., Simson D., Skowroński A.. Elements of Representation Theory of Associative Algebras I: Techniques of Representation Theory, 2005, Cambridge: Cambridge Univ. Press

[3]

Bialkowski J., Skowroński A.. Calabi-Yau stable module categories of finite type. Colloq. Math., 2007, 109(2): 257-269

[4]

Cibils C., Zhang P.. Calabi-Yau objects in triangulated categories. Trans. Amer. Soc., 2009, 361: 6501-6519

[5]

Dugas A.. Periodic resolutions and self-injective algebras of finite type. J. Pure Appl. Algebra, 2010, 214(6): 990-1000

[6]

Dugas, A., Resolutions of mesh algebras: periodicity and Calabi-Yau dimensions. arXiv:RT/1003.4960

[7]

Erdmann K., Skowroński A.. The stable Calabi-Yau dimension of tame symmetric algebras. J. Math. Soc. Japan, 2006, 58(1): 97-128

[8]

Happel D.. Triangulated Categories in Representation Theory of Finite Dimensional Algebras, 1988, Cambridge: Cambridge Univ. Press

[9]

Kontsevich, M., Triangulated categories and geometry, Course at the École Normale Supérieure, Paris, Notes taken by J. Bellaíche, J. F. Dat, I. Marin, G. Racinet, and H. Randriambolona, 1998.

[10]

Skowroński A.. Selfinjective algebas: finite and tame type. Contemp. Math., 2006, 406: 169-238

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/