On the Cauchy Problem describing an electron-phonon interaction

João-Paulo Dias , Mário Figueira , Filipe Oliveira

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 483 -496.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 483 -496. DOI: 10.1007/s11401-011-0663-2
Article

On the Cauchy Problem describing an electron-phonon interaction

Author information +
History +
PDF

Abstract

In this paper, a model is derived to describe a quartic anharmonic interatomic interaction with an external potential involving a pair electron-phonon. The authors study the corresponding Cauchy Problem in the semilinear and quasilinear cases.

Keywords

Schrödinger-like equations / Cauchy problem / Blow-up / Phonon-electron interaction

Cite this article

Download citation ▾
João-Paulo Dias, Mário Figueira, Filipe Oliveira. On the Cauchy Problem describing an electron-phonon interaction. Chinese Annals of Mathematics, Series B, 2011, 32(4): 483-496 DOI:10.1007/s11401-011-0663-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Braun O. M., Fei Z., Kivshar Y. S. Kinks in the Klein-Gordon model with anharmonic interatomic interactions: a variational approach. Physics Letters A, 1991, 157: 241-245

[2]

Caetano F.. On the existence of weak solutions to the Cauchy problem for a class of quasilinear hyperbolic equations with a source term. Rev. Mat. Complut., 2004, 17: 147-167

[3]

Dias J. P., Figueira M.. Existence of weak solutions for a quasilinear version of Benney equations. J. Hyp. Diff. Eq., 2007, 4: 555-563

[4]

Dias J. P., Figueira M., Frid H.. Vanishing viscosity with short wave-long wave interactions for systems of conservation laws. Arch. Ration. Mech. Anal., 2010, 196: 981-1010

[5]

Dias J. P., Figueira M., Oliveira F.. Existence of local strong solutions for a quasilinear Benney system. C. R. Math. Acad. Sci. Paris, 2007, 344: 493-496

[6]

Ginibre J., Tsutsumi Y., Velo G.. On the Cauchy problem for the Zakharov system. J. Funct. Anal., 1997, 151: 384-486

[7]

Kato T.. Quasi-linear equations of evolution, with applications to partial differential equations, 1975, New York: Springer-Verlag 25-70

[8]

Konotop V.. Localized electron-phonon states originated by a three-wave interaction. Physical Review B, 1997, 55(18): R11926-R11928

[9]

Linares F., Matheus C.. Well-posedness for the 1D Zakharov-Rubenchik system. Adv. Diff. Eqs., 2009, 14: 261-288

[10]

Oliveira F.. Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation. Physica D, 2003, 175: 220-240

[11]

Oliveira F.. Adiabatic limit of the Zakharov-Rubenchik equation. Rep. Math. Phys., 2008, 61: 13-27

[12]

Ozawa T., Tsutsumi Y.. Existence and smoothing effect of solutions to the Zakharov equation. Publ. Res. Inst. Math. Sci., 1992, 28: 329-361

[13]

Reed M., Simon B.. Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness, 1975, New York, London: Academic Press

[14]

Serre, D. and Shearer, J., Convergence with physical viscosity for nonlinear elasticity, unpublished manuscript, 1993.

[15]

Shibata Y., Tsutsumi Y.. Local existence of solutions for the initial boundary problem of fully nonlinear wave equation. Nonlinear Anal. TMA, 1987, 11: 335-365

[16]

Wang X., Liang X.. Electron-phonon interaction in ternary mixed crystals. Physical Review B, 1990, 42: 8915-8922

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/