Relative T-injective modules and relative T-flat modules
Mohammad Javad Nikmehr , Farzad Shaveisi
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 497 -506.
Relative T-injective modules and relative T-flat modules
Let T be a Wakamatsu tilting module. A module M is called (n, T)-copure injective (resp. (n, T)-copure flat) if ɛ T 1 (N, M) = 0 (resp. Γ1 T (N, M) = 0) for any module N with T-injective dimension at most n (see Definition 2.2). In this paper, it is shown that M is (n, T)-copure injective if and only if M is the kernel of an I n(T)-precover f: A → B with A ∈ Prod T. Also, some results on Prod T-syzygies are presented. For instance, it is shown that every nth Prod T-syzygy of every module, generated by T, is (n, T)-copure injective.
Wakamatsu tilting module / (n, T)-Copure injective module / (n, T)-Copure flat module / T-Projective dimension / T-Injective dimension
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
/
| 〈 |
|
〉 |