Strongly Gorenstein flat modules and dimensions

Najib Mahdou , Mohammed Tamekkante

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 533 -548.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 533 -548. DOI: 10.1007/s11401-011-0659-y
Article

Strongly Gorenstein flat modules and dimensions

Author information +
History +
PDF

Abstract

There is a variety of nice results about strongly Gorenstein flat modules over coherent rings. These results are done by Ding, Lie and Mao. The aim of this paper is to generalize some of these results, and to give homological descriptions of the strongly Gorenstein flat dimension (of modules and rings) over arbitrary associative rings.

Keywords

Strongly Gorenstein flat modules / Gorenstein projective modules / Gorenstein global (resp., weak) dimension

Cite this article

Download citation ▾
Najib Mahdou, Mohammed Tamekkante. Strongly Gorenstein flat modules and dimensions. Chinese Annals of Mathematics, Series B, 2011, 32(4): 533-548 DOI:10.1007/s11401-011-0659-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander, M. and Bridger, M., Stable module theory, Mem. Amer. Math. Soc., 94, Providence, RI, 1969.

[2]

Bennis D., Mahdou N.. Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra, 2007, 210: 437-445

[3]

Bennis D., Mahdou N.. Global Gorenstein dimensions. Proc. Amer. Math. Soc., 2010, 138(2): 461-465

[4]

Bourbaki, N., Algèbre homologique, Enseign. Math., Chapitre 10, Masson, Paris, 1980.

[5]

Christensen L. W.. Gorenstein Dimensions, 2000, Berlin: Springer-Verlag

[6]

Christensen L. W., Frankild A., Holm H.. On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J. Algebra, 2006, 302: 231-279

[7]

Ding N., Chen J.. The flat dimensions of injective modules. Manuscripta Math., 1993, 78: 165-177

[8]

Ding N., Chen J.. Coherent ring with finite self FP-injective dimension. Comm. Algebra, 1996, 24: 2963-2980

[9]

Ding N., Li Y., Mao L.. Strongly Gorenstein flat modules. J. Aust. Math. Soc., 2009, 86: 323-338

[10]

Enochs E., Jenda O., Torrecillas B.. Gorenstein flat modules. J. Nanjing University, 1993, 10: 1-9

[11]

Enochs E., Jenda O.. On Gorenstein injective modules. Comm. Algebra, 1993, 21: 3489-3501

[12]

Enochs E., Jenda O.. Gorenstein injective and projective modules. Math. Z, 1995, 220: 611-633

[13]

Enochs E., Jenda O.. Relative Homological Algebra, 2000, Berlin: de Gruyter Exp. Math.

[14]

Göbel R., Trlifaj J.. Approximations and Endomorphism Algebras of Modules, 2006, Berlin: de Gruyter Exp. Math.

[15]

Holm H.. Gorenstein homological dimensions. J. Pure Appl. Algebra, 2004, 189: 167-193

[16]

Mahdou, N. and Tamekkante, M., Note on (weak) Gorenstein global dimensions, preprint. arXiv: math/0910.5752v1

[17]

Mao L., Ding N.. The cotorsion dimension of modules and rings, Abelian groups, rings, modules, and homological algebra. Lect. Notes Pure Appl. Math., 2005, 249: 217-233

[18]

Rotman J.. An Introduction to Homological Algebra, 1979, New York: Academic Press

[19]

Stenström B.. Coherent rings and FP-injective module. J. London Math. Soc., 1970, 2: 323-329

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/