Global existence of the equilibrium diffusion model in radiative hydrodynamics

Chunjin Lin , Thierry Goudon

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 549 -568.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 549 -568. DOI: 10.1007/s11401-011-0658-z
Article

Global existence of the equilibrium diffusion model in radiative hydrodynamics

Author information +
History +
PDF

Abstract

This paper is devoted to the analysis of the Cauchy problem for a system of PDEs arising in radiative hydrodynamics. This system, which comes from the so-called equilibrium diffusion regime, is a variant of the usual Euler equations, where the energy and pressure functionals are modified to take into account the effect of radiation and the energy balance containing a nonlinear diffusion term acting on the temperature. The problem is studied in the multi-dimensional framework. The authors identify the existence of a strictly convex entropy and a stability property of the system, and check that the Kawashima-Shizuta condition holds. Then, based on these structure properties, the well-posedness close to a constant state can be proved by using fine energy estimates. The asymptotic decay of the solutions are also investigated.

Keywords

Radiative hydrodynamics / Initial value problem / Equilibrium diffusion regime / Energy method

Cite this article

Download citation ▾
Chunjin Lin, Thierry Goudon. Global existence of the equilibrium diffusion model in radiative hydrodynamics. Chinese Annals of Mathematics, Series B, 2011, 32(4): 549-568 DOI:10.1007/s11401-011-0658-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buet C., Després B.. Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys., 2006, 215: 717-740

[2]

Coulombel J.-F., Golse F., Goudon T.. Diffusion approximation and entropy-based moment closure for kinetic equations. Asymptot. Anal., 2005, 45(1–2): 1-39

[3]

Coulombel J.-F., Goudon T.. The strong relaxation limit of the multidimensional isothermal Euler equations (electronic). Trans. Amer. Math. Soc., 2007, 359(2): 637-648

[4]

Friedrichs K. O.. Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math., 1954, 7: 345-392

[5]

Godillon-Lafitte P., Goudon T.. A coupled model for radiative transfer: Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics (electronic). Multiscale Model. Simul., 2005, 4(4): 1245-1279

[6]

Goudon T., Morel J.-E., Després B. Mathematical Models and Numerical Methods for Radiative Transfer. Panoramas et Synthèses, 28, 2009, Paris: SMF

[7]

Hanouzet B., Natalini R.. Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal., 2003, 169(2): 89-117

[8]

Kato T.. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal., 1975, 58(3): 181-205

[9]

Kawashima S., Nikkuni Y., Nishibata S.. The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics, Analysis of Systems of Conservation Laws (Aachen, 1997). Monogr. Surv. Pure Appl. Math., 99, 1999, Boca Raton: Chapman & Hall/CRC 87-127

[10]

Kawashima S., Nikkuni Y., Nishibata S.. Large-time behavior of solutions to hyperbolic-elliptic coupled systems. Arch. Ration. Mech. Anal., 2003, 170(4): 297-329

[11]

Kawashima S., Yong W.-A.. Dissipative structure and entropy for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal., 2004, 174(3): 345-364

[12]

Lin, C., Mod`eles Mathématiques de la Théorie du Transfert Radiatif, Ph. D. Thesis, Université des Sciences et Technologies de Lille, 2007. Available at http://tel.archives-ouvertes.fr/tel-00411849/fr/

[13]

Lin C., Coulombel J.-F., Goudon T.. Asymptotic stability of shock profiles in radiative hydrodynamics. C. R. Math. Acad. Sci. Paris, 2007, 345(11): 625-628

[14]

Lowrie L., Morel J. E., Hittinger J. A.. The coupling of radiation and hydrodynamics. The Astrophysical J., 1999, 521: 432-450

[15]

Majda A.. Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci., 53, 1984, New York: Springer-Verlag

[16]

Majda A.. Systems of conservation laws in several space variables. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1984, Warsaw: PWN 1217-1224

[17]

Matsumura A., Nishida T.. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 1979, 55(9): 337-342

[18]

Matsumura A., Nishida T.. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 1980, 20(1): 67-104

[19]

Mihalas D., Mihalas B. W.. Foundations of Radiation Hydrodynamics, 1984, New York: Oxford University Press

[20]

Nishida T.. Nonlinear hyperbolic equations and related topics in fluid dynamics, Publications Mathématiques d’Orsay, No. 78-02, 1978, Orsay: Département de Mathématique, Université de Paris-Sud

[21]

Shizuta Y., Kawashima S.. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J., 1985, 14(2): 249-275

[22]

Yong W.-A.. Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal., 2004, 172(2): 247-266

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/