Large solutions to complex Monge-Ampère equations: Existence, uniqueness and asymptotics

Ni Xiang , Xiaoping Yang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 569 -580.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 569 -580. DOI: 10.1007/s11401-011-0657-0
Article

Large solutions to complex Monge-Ampère equations: Existence, uniqueness and asymptotics

Author information +
History +
PDF

Abstract

The authors consider the complex Monge-Ampère equation det\left( {u_{i\bar j} } \right) = ψ(z, u, ∇ u) in bounded strictly pseudoconvex domains Ω, subject to the singular boundary condition u = on Ω. Under suitable conditions on ψ, the existence, uniqueness and the exact asymptotic behavior of solutions to boundary blow-up problems for the complex Monge-Ampère equations are established.

Keywords

Complex Monge-Ampère equation / Boundary blow-up / Plurisubharmonic / Pseudoconvex / Asymptotics

Cite this article

Download citation ▾
Ni Xiang, Xiaoping Yang. Large solutions to complex Monge-Ampère equations: Existence, uniqueness and asymptotics. Chinese Annals of Mathematics, Series B, 2011, 32(4): 569-580 DOI:10.1007/s11401-011-0657-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blocki Z. T.. C 1,1 regularity of the pluricomplex Green function. Michigan Math. J., 2000, 47: 211-215

[2]

Blocki Z.. Regularity of the pluricomplex Green function with several poles. Indiana Univ. Math. J., 2001, 50: 335-351

[3]

Cheng S. Y., Yau S. T.. On the existence of a complete Kahler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math., 1980, 33: 507-544

[4]

Cheng S. Y., Yau S. T.. Chern S. S., Wu W. T.. The real Monge-Ampère equation and affine flat structure. Proc. 1980 Beijing Symp. on Diff. Geom. and Diff. Equations, Vol. I, 1982, Beijing: Science Press 339-370

[5]

Cîrstea F. C., Rădulescu V.. Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptot. Anal., 2006, 46: 275-298

[6]

Cîrstea F. C., Trombetti C.. On the Monge-Ampère equation with boundary blow-up: existence, uniqueness and saymptotics. Cal. Var. Part. Diff. Eqs., 2008, 31: 167-186

[7]

Guan, B. and Spruck, J., The Dirichlet problem for complex Monge-Ampère equation and applications, to appear. http://www.math.osu.edu/guan/papers/guan2009-tpde.pdf

[8]

Guan B., Jian H.-Y.. The Monge-Ampère equation with infinite boundary value. Paci. Jour. Math., 2004, 216: 77-94

[9]

Ivarsson B.. Interior regularity of solutions to a complex Monge-Ampère equation. Ark. Mat., 2002, 40: 275-300

[10]

Ivarsson B., Matero J.. The blow-up rate of solutions to boundary blow-up problems for the complex Monge-Ampère operator. Manuscripta Math., 2006, 120: 325-345

[11]

Krantz S. G.. Function Theory of Several Cpmplex Variables, 1987 2nd ed. Princeton: Princeton University Press

[12]

Lazer A. C., Mckenna P. J.. On singular boundary value problems for the Monge-Ampère operator. J. Math. Anal. Appl., 1996, 197: 341-362

[13]

Resnick S. I.. Extreme values, regular variation, and point processes, Applied Probability 4, 1987, New York: Springer-Verlag

[14]

Xiang N., Yang X. P.. The complex Monge-Ampère Equation with infinite Dirichlet boundary value. Nonlinear Anal., 2008, 68: 1075-1081

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/