Gröbner-Shirshov basis of quantum group of type \mathbb{D}_4

Gulshadam Yunus , Abdukadir Obul

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 581 -592.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 581 -592. DOI: 10.1007/s11401-011-0656-1
Article

Gröbner-Shirshov basis of quantum group of type \mathbb{D}_4

Author information +
History +
PDF

Abstract

The authors take all isomorphism classes of indecomposable representations as new generators, and obtain all skew-commutators between these generators by using the Ringel-Hall algebra method. Then they prove that the set of these skew-commutators is a Gröbner-Shirshov basis for quantum group of type \mathbb{D}_4.

Keywords

Ringel-Hall algebra / Indecomposable modules / Gröbner-Shirshov basis / Compositions

Cite this article

Download citation ▾
Gulshadam Yunus, Abdukadir Obul. Gröbner-Shirshov basis of quantum group of type \mathbb{D}_4. Chinese Annals of Mathematics, Series B, 2011, 32(4): 581-592 DOI:10.1007/s11401-011-0656-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergman G. M.. The diamond lemma for ring theory. Adv. Math., 1978, 29: 178-218

[2]

Bokut L. A.. Imbeddings into simple associative algebras. Algebra Logic, 1976, 15: 117-142

[3]

Bokut L. A., Malcolmson P.. Gröbner-Shirshov bases for quantum enveloping algebras. Israel J. Math., 1996, 96: 97-113

[4]

Buchberger B.. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal (in German), 1965, Austria: University of Innsbruck

[5]

Deng B. M., Du J., Parshal B., Wang J. P.. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, 2008, Providence, RI: A. M. S.

[6]

Drinfel’d V. G.. Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR, 1985, 283(5): 1060-1064

[7]

Gabriel P.. Unzerlegbare Darstellungen I (in German). Manuscripta Math., 1972, 6: 71-103

[8]

Jimbo M. A.. q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys., 1985, 10(1): 63-69

[9]

Ringel C. M.. Hall algebras and quantum groups. Invent. Math., 1990, 101: 583-592

[10]

Ringel C. M.. PBW-bases of quantum groups. J. Reine Angew. Math., 1996, 470: 51-88

[11]

Rosso M.. Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm. Math. Phys., 1988, 117: 581-593

[12]

Shirshov A. I.. Some algorithmic problems for Lie algebras. Siberian Math. J., 1962, 3: 292-296

[13]

Yamane H.. A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type A n. Publ. RIMS. Kyoto Univ., 1989, 25: 503-520

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/