Remarks on the operator norm localization property

Xianjin Wang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 593 -604.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 593 -604. DOI: 10.1007/s11401-011-0655-2
Article

Remarks on the operator norm localization property

Author information +
History +
PDF

Abstract

The author studies the metric spaces with operator norm localization property. It is proved that the operator norm localization property is coarsely invariant and is preserved under certain infinite union. In the case of finitely generated groups, the operator norm localization property is also preserved under the direct limits.

Keywords

Metric space / Asymptotic dimension / Operator norm localization / Coarse invariance / Roe algebra

Cite this article

Download citation ▾
Xianjin Wang. Remarks on the operator norm localization property. Chinese Annals of Mathematics, Series B, 2011, 32(4): 593-604 DOI:10.1007/s11401-011-0655-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell G. C., Dranishbikov A.. On asymptotic dimension of groups. Algeb. Geom. Topol., 2001, 1: 57-71

[2]

Bell G. C., Dranishbikov A.. On asymptotic dimension of groups acting on trees. Geometriae Dedicata, 2004, 103: 89-101

[3]

Chen X. M., Wang Q.. Notes on ideals of Roe algebras. Oxford Quarterly J. Math., 2001, 52: 437-446

[4]

Chen X. M., Wang Q.. Ideal structure of uniform Roe algebras over simple cores. Chin. Ann. Math., 2004, 25B(2): 225-232

[5]

Gong G. H., Wang Q., Yu G. L.. Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math., 2008, 621: 159-189

[6]

Higson, N., Counterexamples to the coarse Baum-Connes conjecture, preprint.

[7]

Higson N., Lafforgue V., Skandalis G.. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal., 2002, 12(2): 330-354

[8]

Roe, J., Coarse Cohomology and Index Theory on Complete Riemannian Manifolds, Mem. Amer. Math. Soc., 104(497), Providence, RI, 1993.

[9]

Roe J.. Lectures on coarse geometry. University Lecture Series, 2003, Providence, RI: A. M. S.

[10]

Yu G. L.. Localization algebras and the coarse Baum-Connes conjecture. K-Theory, 1997, 11: 307-318

[11]

Yu G. L.. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 2000, 139(1): 201-240

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/