Existence of nontrivial solutions for p-Laplacian variational inclusion systems in ℝ N

Zifei Shen , Songqiang Wan

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 619 -630.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (4) : 619 -630. DOI: 10.1007/s11401-011-0651-6
Article

Existence of nontrivial solutions for p-Laplacian variational inclusion systems in ℝ N

Author information +
History +
PDF

Abstract

The authors study the existence of nontrivial solutions to p-Laplacian variational inclusion systems \left\{ \begin{gathered} - \Delta _p u + \left| u \right|^{p - 2} u \in \partial _1 F\left( {u,v} \right), in \mathbb{R}^N , \hfill \\ - \Delta _p v + \left| v \right|^{p - 2} v \in \partial _2 F\left( {u,v} \right), in \mathbb{R}^N , \hfill \\\end{gathered} \right. where N ≥ 2, 2 ≤ pN and F: ℝ2 → ℝ is a locally Lipschitz function. Under some growth conditions on F, and by Mountain Pass Theorem and the principle of symmetric criticality, the existence of such solutions is guaranteed.

Keywords

Mountain pass theorem / p-Laplacian / Principle of symmetric criticality / Variational inclusion systems / (PS)-condition / Locally Lipschitz functions

Cite this article

Download citation ▾
Zifei Shen, Songqiang Wan. Existence of nontrivial solutions for p-Laplacian variational inclusion systems in ℝ N. Chinese Annals of Mathematics, Series B, 2011, 32(4): 619-630 DOI:10.1007/s11401-011-0651-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartsch T., de Figueiredo D. G.. Infinitely many solutions of nonlinear elliptic systems. Prog. Nonlinear Diff. Eqs. Appl., 1999, 35: 51-67

[2]

Bartsch T., Willem M.. Infinitely many non-radial solutions of a Euclidean scalar field equation. J. Funct. Anal., 1993, 117: 447-460

[3]

Chang K. C.. Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl., 1981, 80: 102-129

[4]

Clarke F. H.. Nonsmooth Analysis and Optimization, 1983, New York: Wiley

[5]

Costa D. G.. On a class of elliptic systems in R N, Electron. J. Diff. Eqs., 1994, 111: 103-122

[6]

de Figueiredo D. G.. Semilinear elliptic systems, Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997, River Edge, New Jersey: World Science Publ. 122-152

[7]

Krawcewicz W., Marzantowicz W.. Some remarks on the Lusternik-Schnirelman method for non-differentiable functionals invariant with respect to a finite group action. Rocky Mountain J. Math., 1990, 20: 1041-1049

[8]

Kristály A.. Existence of nonzero weak solutions for a class of elliptic variational inclusions systems in R N. Nonlinear Anal., 2006, 65: 1578-1594

[9]

Kristály A.. Exinstemce of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains. Proc. Edinburgh Math. Soc., 2005, 48: 1-13

[10]

Kristály A., Lisei H., Varga C.. Multiple solutions for p-Laplacian type equations. Nonlinear Anal., 2008, 68: 1375-1381

[11]

Kristály A., Varga C., Varga V.. An eigenvalue problem for hemivariational inequalities with combined nonlinearities on an infinite strip. Nonlinear Anal., 2005, 63: 260-272

[12]

Kristály A., Varga C., Varga V.. A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities. J. Math. Anal. Appl., 2007, 325: 975-986

[13]

Motreanu D., Panagiotopoulos P. D.. Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, 1999, Dordrecht, Boston, London: Kluwer Academic Publishers

[14]

Velin J.. Existence results for some nonlinear elliptic system with lack of compactness. Nonlinear Anal., 2002, 52: 1017-1037

[15]

Willem M.. Minimax Theorems, 1996, Boston: Birkhäuser

[16]

Yang M. B., Shen Z. F.. Multiplicity result for quasilinear elliptic systems with Neumann boundary condition. Acta Anal. Funct. Appl., 2005, 7(2): 146-150

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/