A Poincaré inequality in a Sobolev space with a variable exponent

Philippe G. Ciarlet , George Dinca

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3)

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3) DOI: 10.1007/s11401-011-0648-1
Article

A Poincaré inequality in a Sobolev space with a variable exponent

Author information +
History +
PDF

Abstract

Let Ω be a domain in ℝ N. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space W 1,p(·)(ω), where p(·): $\bar \Omega $ → [1, ∞[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space D(Ω) in the space {vW 1,p(·)(Ω); tr v = 0 on Ω}. Two applications are also discussed.

Keywords

Poincaré inequality / Sobolev spaces with variable exponent

Cite this article

Download citation ▾
Philippe G. Ciarlet, George Dinca. A Poincaré inequality in a Sobolev space with a variable exponent. Chinese Annals of Mathematics, Series B, 2011, 32(3): DOI:10.1007/s11401-011-0648-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R.A.. Sobolev Spaces, 1975, New York: Academic Press

[2]

Chipot M.. Elements of Nonlinear Analysis, 2000, Basel: Birkhäuser

[3]

Ciarlet P. G.. The Finite Element Method for Elliptic Problems, 1978, Amsterdam: North-Holland

[4]

Diening L.. Maximal function on generalized Lebesgue spaces L p(·)(Ω). Math. Inequalities Appl., 2004, 7: 245-254

[5]

Dinca G., Jebelean P.. A priori estimates for the vector p-Laplacian with potential boundary conditions. Arch. Math., 2008, 90: 60-69

[6]

Fan X.. Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl., 2008, 339: 1395-1412

[7]

Fan X., Zhao D.. On the spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl., 2001, 263: 424-446

[8]

Jebelean P., Precup R.. Poincaré inequalities in reflexive cones. Appl. Math. Letters, 2011, 24: 359-363

[9]

Kováčik O., Rákosník J.. On spaces L p(x) and W k,p(x). Czechoslovak. Math. J., 1991, 41: 592-618

[10]

Maeda F.Y.. Poincaré type inequalities for variable exponents. J. Inequalities Pure Appl. Math., 2008, 9: 1-5

[11]

Nečas J.. Les Méthodes Directes en Théorie des Equations Elliptiques, 1967, Paris: Masson

[12]

Yosida K.. Functional Analysis, 1966, Heidelberg: Springer-Verlag

[13]

Zhikov V. V.. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR lzv., 1987, 29: 33-66

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/