Invariant measures and asymptotic Gaussian bounds for normal forms of stochastic climate model

Yuan Yuan , Andrew J. Majda

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3) : 343 -368.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3) : 343 -368. DOI: 10.1007/s11401-011-0647-2
Article

Invariant measures and asymptotic Gaussian bounds for normal forms of stochastic climate model

Author information +
History +
PDF

Abstract

The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Recently, techniques from applied mathematics have been utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. It was shown that dyad and multiplicative triad interactions combine with the climatological linear operator interactions to produce a normal form with both strong nonlinear cubic dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. The probability distribution functions (PDFs) of low frequency climate variables exhibit small but significant departure from Gaussianity but have asymptotic tails which decay at most like a Gaussian. Here, rigorous upper bounds with Gaussian decay are proved for the invariant measure of general normal form stochastic models. Asymptotic Gaussian lower bounds are also established under suitable hypotheses.

Keywords

Reduced stochastic climate model / Invariant measure / Fokker-Planck equation / Comparison principle / Global estimates of probability density function

Cite this article

Download citation ▾
Yuan Yuan, Andrew J. Majda. Invariant measures and asymptotic Gaussian bounds for normal forms of stochastic climate model. Chinese Annals of Mathematics, Series B, 2011, 32(3): 343-368 DOI:10.1007/s11401-011-0647-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berner J., Branstator G.. Linear and nonlinear signatures in planetary wave dynamics of an AGCM: probability density functions. J. Atmos. Sci., 2007, 64: 117-136

[2]

Bogachev V. I., Krylov N. V., Rockner M.. Elliptic equations for measures: regularity and global bounds of densities. J. Math. Pures Appl., 2006, 85(6): 743-757

[3]

Bogachev V. I., Rockner M., Shaposhnikov S. V.. On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Part. Diff. Eqs., 2001, 26(1112): 2037-2080

[4]

Bogachev V. I., Rockner M., Shaposhnikov S. V.. Lower estimates of densities of solutions of elliptic equations for measures. Doklady Mathematics, 2009, 426(2): 156-161

[5]

Browder F. E.. Regularity theorems for solutions of partial differential equations with variable coefficients. Proc. Natl. Acad. Sci. USA, 1957, 43(2): 234-236

[6]

Cerrai S.. Second Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach, 2001, New York: Springer-Verlag

[7]

Doob J. L.. Asymptotic properties of markov transition probabilities. Tran. Amer. Math. Soc., 1948, 3: 393-421

[8]

Evans L. C.. Partial Differential Equations, Graduate Studies in Mathematics, 19, 1998, Providence, RI: A. M. S.

[9]

Fornaro S., Fusco N., Metafune G., Pallara D.. Sharp upper bounds for the density of some invariant measures. Proc. Roy. Soc. Edinburgh, Sect. A Math., 2009, 139: 1145-1161

[10]

Franzke C., Majda A. J., Branstator G.. The origin of nonlinear signatures of planetary wave dynamics: mean phase space tendencies and their information. J. Atmos. Sci., 2007, 64(11): 3987-4003

[11]

Gritsun A., Branstator G.. Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci., 2007, 64: 2558-2575

[12]

Gritsun A., Branstator G., Majda A. J.. Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem. J. Atmos. Sci., 2008, 65: 2824-2841

[13]

Hormander L.. Hypoelliptic second order differential equations. Acta Math., 1967, 119: 147-171

[14]

Khas’minskii R. Z.. Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations. Theory of Prob. and Its Appl., 1960, 9: 179-196

[15]

Krylov N. V.. Introduction to the Theory of Diffusion Processes, Translations of Mathematical Monographs, 142, 1995, Providence, RI: A. M. S.

[16]

Majda A. J., Abramov R., Gershgorin B.. High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability. PNAS, 2010, 107(2): 581-586

[17]

Majda A. J., Abramov R., Grote M.. Information Theory and Stochastics for Multiscale Nonlinear Systems, 2005, Providence, RI: A. M. S.

[18]

Majda A. J., Franzke C., Crommelin D.. Normal forms for reduced stochastic climate models. PNAS, 2009, 16(10): 3649-3653

[19]

Majda A. J., Franzke C., Fischer A., Crommelin D.. Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model. PNAS, 2006, 103(22): 8309-8314

[20]

Majda A. J., Franzke C., Khouider B.. An applied mathematics perspective on stochastic modelling for climate. Phil. Trans. R Soc. A, 2008, 366: 2429-2455

[21]

Majda, A. J., Gershgorin B. and Yuan, Y., Low frequency response and fluctuation-dissipation theorems: theory and practice, J. Atmos. Sci., 2010, in press. DOI: 10.1175/2009JAS3264.1

[22]

Majda A. J., Timofeyev I., Vanden-Eijnden E.. A mathematical framework for stochastic climate models. Commun. Pure Appl. Math., 2001, 54: 891-974

[23]

Majda A. J., Timofeyev I., Vanden-Eijnden E.. Models for stochastic climate prediction. PNAS, 1999, 96(26): 14687-14691

[24]

Majda A. J., Wang X. M.. Linear response theory for statistical ensembles in complex systems with time-periodic forcing. Comm. Math. Sci., 2010, 8(1): 142-172

[25]

Metafune G., Pallara D., Rhandi A.. Global regularity of invariant measures. J. Funct. Anal., 2005, 223: 396-424

[26]

Prato G. D., Goldys B.. Elliptic operators on Rd with unbounded coefficients. J. Diff. Eqs., 2001, 172(2): 333-358

[27]

Protter M. H., Weinberger H. F.. Maximum Principles in Differential Equations, 1984, New York: Springer-Verlag

[28]

Sardeshmukh P. D., Sura P.. Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 2009, 22(5): 1193-1207

[29]

Stephenson D. B., Hannachi A., Oneill A.. On the existence of multiple climate regimes. Q. J. R. Meteorol. Soc., 2004, 130: 583-605

[30]

Sura P., Sardeshmukh P.. A global view of non-Gaussian SST variability. J. Phys. Oceonogr., 2008, 38: 639-647

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/