The nonlinear Schrödinger equations with combined nonlinearities of power-type and Hartree-type

Daoyuan Fang , Zheng Han , Jialing Dai

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3)

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3) DOI: 10.1007/s11401-011-0642-7
Article

The nonlinear Schrödinger equations with combined nonlinearities of power-type and Hartree-type

Author information +
History +
PDF

Abstract

The primary goal of this paper is to present a comprehensive study of the nonlinear Schrödinger equations with combined nonlinearities of the power-type and Hartree-type. Under certain structural conditions, the authors are able to provide a complete picture of how the nonlinear Schrödinger equations with combined nonlinearities interact in the given energy space. The method used in the paper is based upon the Morawetz estimates and perturbation principles.

Keywords

Global well-posedness / Scattering / blowup / Morawetz estimates / Perturbation principles

Cite this article

Download citation ▾
Daoyuan Fang, Zheng Han, Jialing Dai. The nonlinear Schrödinger equations with combined nonlinearities of power-type and Hartree-type. Chinese Annals of Mathematics, Series B, 2011, 32(3): DOI:10.1007/s11401-011-0642-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgain J.. Global well-posedness of defocusing 3D critical NLS in the radial case. J. Amer. Math. Soc., 1999, 2: 145-171

[2]

Cazenave T.. Semilinear Schrödinger Equation, Courant Lecture Notes in Mathematics, 2003, Providence, RI: A. M. S.

[3]

Cazenave T., Weissler F. B.. Critical nonlinear Schrödinger equation. Nonlinear Anal. TMA, 1990, 14: 807-836

[4]

Colliander J., Grillakis M., Tzirakis N.. Tensor products and corrolation estimates with applications to nonlinear Schrödinger equations. Comm. Pure Appl. Math., 2009, 62(7): 920-968

[5]

Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R3. Ann. of Math., 2008, 167(3): 767-865

[6]

Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.. Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on ℝ3. Comm. Pure Appl. Math., 2004, 57(8): 987-1014

[7]

Giorgio T.. Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 1976, 110(4): 353-372

[8]

Glassey R. T.. On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys., 1977, 18: 1794-1797

[9]

Holmer J., Tzirakis N.. Asymptotically linear solutions in H 1 of the 2D defocusing nonlinear Schrödinger and Hartree equations. J. Hyperbolic Diff. Equ., 2010, 7(1): 117-138

[10]

Kato T.. Perturbation theory for linear operators, 1980 2nd ed. Berlin: Springer-Verlag

[11]

Kato T.. On nonlinear Schrödinger equations. Ann. Inst. H. Poincare Phys. Theor., 1987, 46: 113-129

[12]

Kato T.. On nonlinear Schrödinger equations II, Hs-solutions and unconditional well-posedness. J. d’Analyse. Math., 1995, 67: 281-306

[13]

Keel M., Tao T.. Endpoint Strichartz estimates. Amer. Math. J., 1998, 120: 955-980

[14]

Kenig C. E., Merle F.. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 2006, 166(3): 645-675

[15]

Killip R., Visan M.. The focusing energy-critical nonlinear Schrödinger equation in five and high. Amer. J. Math., 2010, 132(2): 361-424

[16]

Killip R., Visan M., Zhang X.. The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. Part. Diff. Eqs., 2008, 1(2): 229-266

[17]

Lieb E. H.. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math., 1983, 118(2): 349-374

[18]

Miao, C., Xu, G. and Zhao, L., Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in ℝ1+n. arXiv: 0707.3254v1 [math.AP] 22 Jul 2007.

[19]

Miao C., Xu G., Zhao L.. Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case. Colloquium Mathematicum, 2009, 114: 213-236

[20]

Miao C., Xu G., Zhao L.. Global well-posedness and scattering for the mass-critical Hartree equation with radial data. J. Math. Pures Appl., 2009, 91: 49-79

[21]

Miao C., Xu G., Zhao L.. The Cauchy problem of the Hartree equation. J. PDEs., 2008, 21: 22-44

[22]

Ryckman E., Visan M.. Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in ℝ1+4. Amer. J. Math., 2007, 129(1): 1-60

[23]

Tao T., Visan M.. Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Diff. Eqns., 2005, 118: 1-28

[24]

Tao T., Visan M., Zhang X.. The nonlinear Schrödinger equation with combined power-type nonlinearities. Comm. Part. Diff. Eqs., 2007, 32: 1281-1343

[25]

Tao T., Visan M., Zhang X. Y.. Minimal-mass blowup solutions of the mass-critical NLS. Forum Math., 2008, 20(5): 881-919

[26]

Thierry A.. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9), 1976, 55(3): 269-296

[27]

Visan M.. The defocusing energy-critical Schrödinger equation in higher dimensions. Duke Math. J., 2007, 138(2): 281-374

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/