A note on Heegaard splittings of amalgamated 3-manifolds

Kun Du , Xutao Gao

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3) : 475 -482.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (3) : 475 -482. DOI: 10.1007/s11401-011-0641-8
Article

A note on Heegaard splittings of amalgamated 3-manifolds

Author information +
History +
PDF

Abstract

Let M be a compact orientable irreducible 3-manifold, and F be an essential connected closed surface in M which cuts M into two manifolds M 1 and M 2. If M i has a minimal Heegaard splitting Mi = $V_i \cup _{H_i }$Wi with d(H 1) + d(H 2) ≥ 2(g(M 1) + g(M 2) − g(F)) + 1, then g(M) = g(M 1) + g(M 2) − g(F).

Keywords

Distance / Stabilization / Strongly irreducible

Cite this article

Download citation ▾
Kun Du, Xutao Gao. A note on Heegaard splittings of amalgamated 3-manifolds. Chinese Annals of Mathematics, Series B, 2011, 32(3): 475-482 DOI:10.1007/s11401-011-0641-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bachman D.. Connected sums of unstabilized Heegaard splittings are unstabilized. Geom. Topol., 2008, 12: 2327-2378

[2]

Casson A., McA Gordon C.. Reducing Heegaard splittings. Topology Appl., 1987, 27: 275-283

[3]

Du, K., Lei, F. and Ma, J., Distance and self-amalgamation of Heegaard splittings, preprint.

[4]

Du K., Qiu R.. The self-amalgamation of high distance Heegaard splittings is always efficient. Topology Appl., 2010, 157(7): 1136-1141

[5]

Du, K., Qiu, R., Ma, J. and Zhang, M., Distance and Heegaard genera of annular 3-manifold, J. Knot Theory Ramifications, to appear.

[6]

Hartshorn K.. Heegaard splittings of Haken manifolds have bounded distance. Pacific J. Math., 2002, 204: 61-75

[7]

Hempel J.. 3-Manifolds as viewed from the curve complex. Topology, 2001, 40: 631-657

[8]

Kobayashi T., Qiu R.. The amalgamation of high distance Heegaard splittings is unstabilized. Math. Ann., 2008, 341(3): 707-715

[9]

Kobayashi T., Qiu R., Rieck Y., Wang S.. Separating incompressible surfaces and stabilizations of Heegaard splittings. Math. Proc. Cambridge Philos. Soc., 2004, 137(3): 633-643

[10]

Lackenby M.. The Heegaard genus of amalgamated 3-manifolds. Geom. Dedicata, 2004, 109: 139-145

[11]

Lei F., Yang G.. A lower bound of genus of amalgamations of Heegaard splittings. Math. Proc. Camb. Phil. Soc., 2009, 146: 615-623

[12]

Li, T., Heegaard surfaces and the distance of amalgamation. arXiv: math.GT/0807.2869

[13]

Li T.. Saddle tangencies and the distance of Heegaard splittings. Albegr. Geom. Topol., 2007, 7: 1119-1134

[14]

Li T.. On the Heegaard splittings of amalgamated 3-manifolds, Workshop on Heegaard Splittings. Geom. Topol. Monogr., 2007, Coventry: Geom. Topol. Publ. 157-190

[15]

Moriah Y.. Heegaard splittings of knot exteriors, Workshop on Heegaard Splittings. Geom. Topol. Monogr., 2007, Coventry: Geom. Topol. Publ. 191-232

[16]

Qiu R.. Untelescopings of Heegaard splittings. Northeast. Math. J., 2000, 16(4): 484-490

[17]

Qiu R., Lei F.. On the Heegaard genera of 3-manifolds containing non-separating surfaces. Topology and Physics, Nankai Tracts Math., 2008, Hackensack, New Jersey: World Sci. Publ. 341-347

[18]

Qiu R., Scharlemann M.. A proof of the Gordon conjecture. Adv. Math., 2009, 222(6): 2085-2106

[19]

Qiu R., Wang S., Zhang M.. Additivity of Heegaard genera of bounded surface sums. Topology and Its Appl., 2010, 157: 1593-1601

[20]

Scharlemann M.. Proximity in the curve complex: boundary reduction and bicompressible surfaces. Pacific J. Math., 2006, 228(2): 325-348

[21]

Scharlemann M.. Local detection of strongly irreducible Heegaard splittings. Topology and Its Appl., 1998, 90: 135-147

[22]

Scharlemann M., Thompson A.. Thin position for 3-manifolds, Geometric Topology (Haifa, 1992), 1994, Providence, RI: A. M. S. 231-238

[23]

Schultens J.. The classification of Heegaard splittings for (compact orientable surface)×S 1. Proc. London Math. Soc., 1993, 67(3): 425-448

[24]

Souto, J., The Heegaard genus and distance in curve complex, preprint.

[25]

Schultens J., Weidmann R.. Destabilizing amalgamated Heegaard splittings, Workshop on Heegaard Splittings. Geom. Topol. Monogr., 2007, Coventry: Geom. Topol. Publ. 319-334

[26]

Yang G., Lei F.. On amalgamations of Heegaard splittings with high distance. Proc. Amer. Math. Soc., 2009, 137(2): 723-731

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/