The global existence of small solutions to the Oldroyd-B model

Wenjing Zhao

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 215 -222.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 215 -222. DOI: 10.1007/s11401-011-0636-5
Article

The global existence of small solutions to the Oldroyd-B model

Author information +
History +
PDF

Abstract

The Cauchy problem to the Oldroyd-B model is studied. In particular, it is shown that if the smooth solution (u, τ) to this system blows up at a finite time T*, then ∫0 T* ‖▿u(t)‖ L dt = ∞. Furthermore, the global existence of smooth solution to this system is given with small initial data.

Keywords

Cauchy problem / Oldroyd-B model / Global existence

Cite this article

Download citation ▾
Wenjing Zhao. The global existence of small solutions to the Oldroyd-B model. Chinese Annals of Mathematics, Series B, 2011, 32(2): 215-222 DOI:10.1007/s11401-011-0636-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beale J. T., Kato T., Majda A.. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys., 1984, 94(1): 61-66

[2]

Bird R. B., Armstrong R. C., Hassager O.. Fluid Mechanics, Dynamics of Polymeric Liquids, Vol. 1, 1987, New York: John Wiley and Sons

[3]

Chemin J. Y., Masmoudi N.. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal., 2001, 33(1): 84-112

[4]

Chen Y., Zhang P.. The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Comm. Part. Diff. Eqs., 2006, 31(10–12): 1793-1810

[5]

de Gennes P. G., Prost J.. The Physics of Liquid Crystals, 1993, New York: Oxford University Press

[6]

E W. N., Li T. J., Zhang P. W.. Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys., 2004, 248(2): 409-427

[7]

Friendman A.. Partial Differential Equations, Holt, 1969, New York: Rinehart and Winston

[8]

Guillopé C., Saut J.-C.. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal., 1990, 15(9): 849-869

[9]

Heywood J. G.. The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J., 1980, 29(5): 639-681

[10]

Larson R. G.. The Structure and Rheology of Complex Fluids, 1995, New York: Oxford University Press

[11]

Lei Z., Liu C., Zhou Y.. Global solutions for incompressible viscoelastic fluids. Arch. Rational Mech. Anal., 2008, 188: 371-398

[12]

Li T. T.. Global Classical Solutions for Quasilinear Hyperbolic Systems, 1994, Chichester, New York, Paris: Wiley

[13]

Lin F. H., Liu C., Zhang P.. On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math., 2005, 58(11): 1437-1471

[14]

Lin F. H., Liu C., Zhang P.. On a micro-macro model for polymeric fluids near equilibrium. Comm. Pure Appl. Math., 2007, 60(6): 838-866

[15]

Lin F. H., Zhang P.. On the initial boundary value problem of the incompressible viscoelastic fluid system. Comm. Pure Appl. Math., 2008, 61(4): 539-558

[16]

Nirenberg L.. On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, 1959, 13: 115-162

[17]

Oldroyd J. G.. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. London. Ser. A, 1958, 245: 278-297

[18]

Renardy M., Hrusa W. J., Nohel W. J.. Mathematics Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35, 1987, Harlow: Longman Scientific and Technical

[19]

Zheng S. M.. Nonlinear Evolution Equations, Monographs and Surveys in Pure and Applied Mathematics, Vol. 133, 2004, Boca Raton, Florida: Chapman & Hall/CRC

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/