The second type singularities of symplectic and lagrangian mean curvature flows

Xiaoli Han , Jiayu Li , Jun Sun

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 223 -240.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 223 -240. DOI: 10.1007/s11401-011-0635-6
Article

The second type singularities of symplectic and lagrangian mean curvature flows

Author information +
History +
PDF

Abstract

This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a Kähler surface. The relation between the maximum of the Kähler angle and the maximum of |H|2 on the limit flow is studied. The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.

Keywords

Symplectic surface / Lagrangian surface / Mean curvature flow

Cite this article

Download citation ▾
Xiaoli Han, Jiayu Li, Jun Sun. The second type singularities of symplectic and lagrangian mean curvature flows. Chinese Annals of Mathematics, Series B, 2011, 32(2): 223-240 DOI:10.1007/s11401-011-0635-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altschuler S. J.. Singularities of the curve shrinking flow for space curves. J. Diff. Geom., 1991, 34: 491-514

[2]

Chen J., Li J.. Mean curvature flow of surface in 4-manifolds. Adv. Math., 2001, 163: 287-309

[3]

Chen J., Li J.. Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math., 2004, 156: 25-51

[4]

Chen, J. and Li, J., Singularities of codimension two mean curvature flow of symplectic surface, preprint.

[5]

Chen J., Tian G.. Minimal surfaces in Riemannian 4-manifolds. Geom. Funct. Anal., 1997, 7: 873-916

[6]

Chern S. S., Wolfson J.. Minimal surfaces by moving frames. Amer. J. Math., 1983, 105: 59-83

[7]

Ecker K., Huisken G.. Mean curvature evolution of entire graphs. Ann. Math., 1989, 130: 453-471

[8]

Groh, K., Schwarz, M., Smoczyk, K., et al., Mean curvature flow of monotone Lagrangian submanifolds. arXiv: math/0606428v1

[9]

Hamilton R. S.. Harnack estimate for the mean curvature flow. J. Diff. Geom., 1995, 41: 215-226

[10]

Han X., Li J.. The mean curvature flow approach to the symplectic isotropy problem. IMRN, 2005, 26: 1611-1620

[11]

Han X., Li J.. Translating solitons to symplectic and Lagrangian mean curvature flows. Inter. J. Math., 2009, 20(4): 443-458

[12]

Han, X. and Sun, J., Translating solitons to symplectic mean curvature flows, Ann. Glob. Anal. Geom., to appear.

[13]

Harvey R., Lawson H. B.. Calibrated geometries. Acta Math., 1982, 148: 47-157

[14]

Huisken G., Sinestrati C.. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math., 1999, 183(1): 45-70

[15]

Huisken G., Sinestrari C.. Mean curvature flow singularities for mean convex surfaces. Calc. Var. Part. Diff. Eqs., 1999, 8(1): 1-14

[16]

Joyce, D., Lee, Y.-I. and Tsui, M.-P., Self-similar solutions and translating solitons for Lagrangian mean curvature flow. arXiv: 0801.3721v1

[17]

Neves A.. Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. Math., 2007, 168: 449-484

[18]

Neves, A. and Tian, G., Translating solutions to Lagrangian mean curvature flow. arXiv: 0711.4341

[19]

Smoczyk K.. Der Lagrangesche Mittlere Kruemmungsfluss, 102, 2000, Habil.-Schr.: Univ. Leipzig

[20]

Smoczyk K.. Angle theorems for the Lagrangian mean curvature flow. Math. Z., 2002, 240: 849-883

[21]

Smoczyk K., Wang M. T.. Mean curvature flows for Lagrangian submanifolds with convex potentials. J. Diff. Geom., 2002, 62: 243-257

[22]

Wang M.-T.. Mean curvature flow of surfaces in Einstein four manifolds. J. Diff. Geom., 2001, 57: 301-338

[23]

White B.. The nature of singularities in mean curvature flow of mean-convex sets. J. Amer. Math. Soc., 2003, 16: 123-138

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/