The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in ℂ n

Xiaosong Liu , Taishun Liu

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 241 -252.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 241 -252. DOI: 10.1007/s11401-011-0634-7
Article

The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in ℂ n

Author information +
History +
PDF

Abstract

In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n(z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and $\begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}}{{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }}{{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ Here i = $\sqrt { - 1} $, θ plq ∈ (−θ,θ] (q = 1, 2, …, tk + 1), l 1, l 2, …, l tk+1 = 1, 2, …, n, t = 1, 2, …. Moreover, as corollaries, the sharp upper bounds of growth theorem and distortion theorem for a k-fold symmetric quasi-convex mapping are established as well. These results show that in the case of quasi-convex mappings, Bieberbach conjecture in several complex variables is partly proved, and many known results are generalized.

Keywords

Estimates of all homogeneous expansions / Quasi-convex mapping / Quasi-convex mapping of type A / Quasi-convex mapping of type B

Cite this article

Download citation ▾
Xiaosong Liu, Taishun Liu. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in ℂ n. Chinese Annals of Mathematics, Series B, 2011, 32(2): 241-252 DOI:10.1007/s11401-011-0634-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gong S.. The Bieberbach Conjecture. Studies in Advanced Mathematics, Vol. 12, 1999, Providence, RI: A. M. S., International Press

[2]

Cartan, H., Sur la possibilité d’étendre aux fonctions de plusieurs variables complexes la theorie des fonctions univalent, Lecons sur les Fonctions Univalent ou Mutivalents, P. Montel (ed.), Gauthier-Villar, Paris, 1933.

[3]

Zhang W. J., Dong D. Z., Wang Y. Z.. The growth theorem for convex maps on the Banach space (in Chinese). Chin. Quart. J. of Math., 1992, 7(2): 84-87

[4]

Roper K. A., Suffridge T. J.. Convexity properties of holomorphic mappings in ℂn. Trans. Amer. Math. Soc., 1999, 351: 1803-1833

[5]

Liu X. S.. On the quasi-convex mappings on the unit polydisk in ℂn. J. Math. Anal. Appl., 2007, 335(1): 43-55

[6]

Liu X. S., Liu M. S.. Quasi-convex mappings of order α on the unit polydisk in Cn. Rocky Mountain J. Math., 2010, 40(5): 1619-1644

[7]

Liu T. S., Liu X. S.. On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings. J. Math. Anal. Appl., 2004, 295(2): 404-417

[8]

Gong S.. Convex and Starlike Mappings in Several Complex Variables (in Chinese), 2003 2nd ed. Beijing: Science Press

[9]

Zhang W. J., Liu T. S.. The growth and covering theorems for quasi-convex mappings in the unit ball of a complex Banach space. Sci. China Ser. A, 2002, 45(12): 1538-1547

[10]

Honda T.. The growth theorem for k-fold symmetric convex mappings. Bull. London Math. Soc., 2002, 34(6): 717-724

[11]

Lin Y. Y., Hong Y.. Some properties of holomorphic maps in Banach spaces (in Chinese). Acta Math. Sin., 1995, 38(2): 234-241

[12]

Liu T. S., Liu X. S.. A refinement about estimation of expansion coefficients for normalized biholomorphic mappings. Sci. China Ser. A, 2005, 48(7): 865-879

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/