Hopf superquivers

Hongchang Dong , Hualin Huang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 253 -264.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 253 -264. DOI: 10.1007/s11401-011-0633-8
Article

Hopf superquivers

Author information +
History +
PDF

Abstract

In this paper, a super version of the Hopf quiver theory is developed. The notion of Hopf superquivers is introduced. It is shown that only the path supercoalgebras of Hopf superquivers admit graded Hopf superalgebra structures. A complete classification of such graded Hopf superalgebras is given. A superquiver setting for general pointed Hopf superalgebras is also built up. In particular, a super version of the Gabriel type theorem and the Cartier-Gabriel decomposition theorem is given.

Keywords

Hopf superalgebra / Superquiver / Path supercoalgebra

Cite this article

Download citation ▾
Hongchang Dong, Hualin Huang. Hopf superquivers. Chinese Annals of Mathematics, Series B, 2011, 32(2): 253-264 DOI:10.1007/s11401-011-0633-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andruskiewitsch N., Schneider H. J.. Lifting of quantum linear spaces and pointed Hopf algebras of order p 3. J. Algebra, 1998, 209: 658-691

[2]

Assem I., Simson D., Skowronski A.. Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, 2006, Cambridge: Cambridge University Press

[3]

Chen X. W., Huang H. L., Ye Y., Zhang P.. Monomial Hopf algebras. J. Algebra, 2004, 275: 212-232

[4]

Chin W., Montgomery S.. Basic Coalgebras, Modular Interfaces, Riverside, CA, 1995. AMS/IP Stud. Adv. Math., 1997, 4: 41-47

[5]

Cibils C., Rosso M.. Algèbres des chemins quantiques. Adv. Math, 1997, 125: 171-199

[6]

Cibils C., Rosso M.. Hopf quivers. J. Algebra, 2002, 254: 241-251

[7]

Dieudonné J.. Introduction to the Theory of Formal Groups, 1973, New York: Marcel Dekker

[8]

Green E. L., Solberg Basic Hopf algebras and quantum groups. Math. Z, 1998, 229: 45-76

[9]

Green J. A.. Locally finite representations. J. Algebra, 1976, 41: 137-171

[10]

Han Y., Zhao D.. Superspecies and their representations. J. Algebra, 2009, 321: 3668-3680

[11]

Kac V.. Lie superalgebras. Adv. Math., 1977, 26: 8-96

[12]

Kostant B.. Graded manifolds, graded Lie theory, and prequantization, Differential Geometrical Methods In Mathematical Physics. Lecture Notes in Math., 1977, Berlin: Springer-Verlag 177-306

[13]

Kulish P. P., Reshetikhin N. Yu.. Universal R-matrix of the quantum superalgebra osp(2|1). Lett. Math. Phys, 1989, 18(2): 143-149

[14]

Majid S.. Foundations of Quantum Group Theory, 1995, Cambridge: Cambridge University Press

[15]

Milnor J. W., Moore J. C.. On the structure of Hopf algebras. Ann. Math, 1965, 81: 211-264

[16]

Montgomery, S., Hopf algebras and their actions on rings, CBMS Regional Conf. Series in Math., 82, A. M. S., Providence, RI, 1993.

[17]

Montgomery S.. Indecomposable coalgebras, simple comodules and pointed Hopf algebras. Proc. Amer. Math. Soc., 1995, 123: 2343-2351

[18]

Rosso M.. Quantum groups and quantum shuffles. Invent. Math, 1998, 133: 399-416

[19]

Van Oystaeyen F., Zhang P.. Quiver Hopf algebras. J. Algebra, 2004, 280(2): 577-589

[20]

Zhang R. B.. Three-manifold invariants arising from U q(osp(1|2)). Modern Phys. Lett. A, 1994, 9: 1453-1465

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/