Operator-valued fourier multipliers on multi-dimensional hardy spaces

Shangquan Bu

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 293 -302.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 293 -302. DOI: 10.1007/s11401-011-0630-y
Article

Operator-valued fourier multipliers on multi-dimensional hardy spaces

Author information +
History +
PDF

Abstract

The author establishes operator-valued Fourier multiplier theorems on multi-dimensional Hardy spaces H p($\mathbb{T}$ d;X), where 1 ≤ p < ∞, d ∈ ℕ, and X is an AUMD Banach space having the property (α). The sufficient condition on the multiplier is a Marcinkiewicz type condition of order 2 using Rademacher boundedness of sets of bounded linear operators. It is also shown that the assumption that X has the property (α) is necessary when d ≥ 2 even for scalar-valued multipliers. When the underlying Banach space does not have the property (α), a sufficient condition on the multiplier of Marcinkiewicz type of order 2 using a notion of d-Rademacher boundedness is also given.

Keywords

H p-Spaces / Fourier multiplier / Rademacher boundedness / d-Rademacher boundedness

Cite this article

Download citation ▾
Shangquan Bu. Operator-valued fourier multipliers on multi-dimensional hardy spaces. Chinese Annals of Mathematics, Series B, 2011, 32(2): 293-302 DOI:10.1007/s11401-011-0630-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arendt W., Bu S. Q.. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z., 2002, 240: 311-343

[2]

Blower G.. A multiplier characterization of analytic UMD spaces. Studia Math., 1990, 96: 117-124

[3]

Bu S. Q., Kim J.-M.. Operator-valued Fourier multiplier theorems on L p-spaces on $\mathbb{T}$ d. Arch. Math. (Basel), 2004, 82: 404-414

[4]

Bu S. Q., Le Merdy C.. H p-maximal regularity and operator valued multipliers on Hardy spaces. Canad. J. Math., 2007, 59(6): 1207-1222

[5]

Clément P., de Pagter B., Sukochev F. A., Witvliet M.. Schauder decomposition and multiplier theorems. Studia Math., 2000, 138: 135-163

[6]

Edgar G. A.. Analytic martingale convergence. J. Funct. Anal., 1986, 69: 268-280

[7]

Hytönen T. P.. Convolutions, multipliers and maximal regularity on vector-valued Hardy spaces. J. Evol. Equ., 2005, 5: 205-225

[8]

Le Merdy C.. Two results about H functional calculus on analytic UMD Banach spaces. J. Aust. Math. Soc., 2003, 74: 351-378

[9]

Lindenstrauss J., Tzafriri L.. Classical Banach Spaces II, 1979, Berlin: Springer-Verlag

[10]

Pisier G.. Some results on Banach spaces without local unconditional structure. Compos. Math., 1978, 37: 3-19

[11]

Strkalj Z., Weis L.. On operator-valued Fourier multipliers theorems. Trans. Amer. Math. Soc., 2007, 359(8): 3529-3547

[12]

Zimmermann F.. On vector-valued Fourier multiplier theorems. Studia Math., 1989, 93: 201-222

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/