Sharp bounds for symmetric and asymmetric diophantine approximation

Cornelis Kraaikamp , Ionica Smeets

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 303 -320.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (2) : 303 -320. DOI: 10.1007/s11401-011-0629-4
Article

Sharp bounds for symmetric and asymmetric diophantine approximation

Author information +
History +
PDF

Abstract

In 2004, Tong found bounds for the approximation quality of a regular continued fraction convergent to a rational number, expressed in bounds for both the previous and next approximation. The authors sharpen his results with a geometric method and give both sharp upper and lower bounds. The asymptotic frequencies that these bounds occur are also calculated.

Keywords

Continued fractions / Diophantine approximation / Upper and lower bounds

Cite this article

Download citation ▾
Cornelis Kraaikamp, Ionica Smeets. Sharp bounds for symmetric and asymmetric diophantine approximation. Chinese Annals of Mathematics, Series B, 2011, 32(2): 303-320 DOI:10.1007/s11401-011-0629-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bagemihl F., McLaughlin J. R.. Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions. J. Reine Angew. Math., 1966, 221: 146-149

[2]

Borel E.. Contribution à l’analyse arithmétique du continu. J. Math. Pures Appl., 1903, 9: 329-375

[3]

Bosma W., Jager H., Wiedijk F.. Some metrical observations on the approximation by continued fractions. Nederl. Akad. Wetensch. Indag. Math., 1983, 45(3): 281-299

[4]

Fujiwara M.. Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen. Tôhoku Math. J., 1918, 14: 109-115

[5]

Hurwitz A.. Ueber die angenäherte Darstellung der Zahlen durch rationale Brüche. Math. Ann., 1894, 44(2–3): 417-436

[6]

Iosifescu M., Kraaikamp C.. Metrical Theory of Continued Fractions, Math. and Its Appl., Vol. 547, 2002, Dordrecht: Kluwer Academic Publishers

[7]

Kraaikamp C.. On the approximation by continued fractions. II. Indag. Math. (N. S.), 1990, 1(1): 63-75

[8]

Kraaikamp C.. On symmetric and asymmetric Diophantine approximation by continued fractions. J. Number Theory, 1994, 46(2): 137-157

[9]

Lejeune Dirichlet G.. Mathematische Werke, Bände I, II, Herausgegeben auf Veranlassung der Königlich Preussischen Akademie der Wissenschaften von L. Kronecker, 1969, Bronx, New York: Chelsea Publishing Co.

[10]

Müller M.. Über die Approximation reeller Zahlen durch die Näherungsbrüche ihres regelmäßigen Kettenbruches. Arch. Math., 1955, 6: 253-258

[11]

Nakada H.. Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math., 1981, 4(2): 399-426

[12]

Nakada H., Ito S., Tanaka S.. On the invariant measure for the transformations associated with some real continued-fractions. Keio Engrg. Rep., 1977, 30(13): 159-175

[13]

Tong J. C.. The conjugate property of the Borel theorem on Diophantine approximation. Math. Z., 1983, 184(2): 151-153

[14]

Tong J. C.. Segre’s theorem on asymmetric Diophantine approximation. J. Number Theory, 1988, 28(1): 116-118

[15]

Tong J. C.. Symmetric and asymmetric Diophantine approximation of continued fractions. Bull. Soc. Math. France, 1989, 117(1): 59-67

[16]

Tong J. C.. Diophantine approximation by continued fractions. J. Austral. Math. Soc. Ser. A, 1991, 51(2): 324-330

[17]

Tong J. C.. Symmetric and asymmetric Diophantine approximation. Chin. Ann. Math., 2004, 25B(1): 139-142

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/