Some abstract critical point theorems for self-adjoint operator equations and applications

Chungen Liu , Qi Wang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 1 -14.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 1 -14. DOI: 10.1007/s11401-010-0628-x
Article

Some abstract critical point theorems for self-adjoint operator equations and applications

Author information +
History +
PDF

Abstract

By using the index theory for linear bounded self-adjoint operators in a Hilbert space related to a fixed self-adjoint operator A with compact resolvent, the authors discuss the existence and multiplicity of solutions for (nonlinear) operator equations, and give some applications to some boundary value problems of first order Hamiltonian systems and second order Hamiltonian systems.

Keywords

Self-adjoint operator equations / Index theory / Relative Morse index / Dual variational method / Morse theory / Hamiltonian systems

Cite this article

Download citation ▾
Chungen Liu, Qi Wang. Some abstract critical point theorems for self-adjoint operator equations and applications. Chinese Annals of Mathematics, Series B, 2011, 32(1): 1-14 DOI:10.1007/s11401-010-0628-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amann H., Zehnder E.. Nontrivial soultions for a class of nonresonance problems and applications to nonlinear differential equations. Annali Scuola Norm. Sup. Pisa., 1980, 7: 439-603

[2]

Chang K. C.. Infinite Dimensional Morse Theory and Multiple Solution Problems, 1993, Basel: Birkhauser

[3]

Chang K. C.. Solutions of asymptotically linear operator equations via Morse theory. Comm. Pure Appl. Math., 1981, 34: 693-712

[4]

Chang K. C.. Critical Point Theory and Its Application (in Chinese), 1986, Shanghai: Shanghai Sci. Tech. Press

[5]

Conley C., Zehnder E.. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 1984, 37: 207-253

[6]

Dong Y.. Index theory for linear self-adjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc. Var., 2010, 38: 75-109

[7]

Dong D., Long Y.. The iteration formula of Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans. Amer. Math. Soc., 1997, 349: 2619-2661

[8]

Ekeland I.. Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik, 1990, Berlin: Springer

[9]

Ekeland I.. Une theorie de Morse pour les systemes hamiltoniens convexes. Ann IHP “Analyse non lineaire”, 1984, 1: 19-78

[10]

Ekeland I., Hofer H.. Periodic solutions with prescribed period for convex autonomous Hamitonian systems. Invent. Math., 1985, 81: 155-188

[11]

Ekeland I., Hofer H.. Convex Hamiltonian energy surfaces and their closed trajectories. Comm. Math. Phys., 1987, 113: 419-467

[12]

Ghoussoub N.. Duality and Perturbation Methods in Critical Point Theory, 1993, Cambridge: Cambridge University Press

[13]

Liu C.. Maslov-type P-index theory for a symplectic path with applications. Chin. Ann. Math., 2006, 27B(4): 441-458

[14]

Liu C.. Asymptotically linear Hamiltonian system with Lagrangian boundary conditions. PJM, 2007, 232: 232-254

[15]

Liu C.. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Advanced Nonlinear Studies, 2007, 7: 131-161

[16]

Liu C., Long Y., Zhu C.. Multiplicity of closed characteristics on symmetric convex hypersurfaces in ℝ2 n. Math. Ann., 2002, 323: 201-215

[17]

Liu C., Wang Q., Lin X.. An index theory for symplectic paths associated with two Lagrangian subspaces with applications. Nonlinearity, 2011, 24: 43-70

[18]

Liu Z., Su J., Wang Z.. A twist condition and periodic solutions of Hamiltonian system. Adv. Math., 2008, 218: 1895-1913

[19]

Liu Z., Su J., Wang Z.. Solutions of elliptic problems with nonlinearities of linear growth. Calc. Var., 2009, 35: 463-480

[20]

Long Y.. Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Sci. China, 1990, 33: 1409-1419

[21]

Long Y.. A Maslov-type index theory for symplectic paths. Topol. Methods Nonlinear Anal., 1997, 10: 47-78

[22]

Long Y., Zehnder E. Alberverio S. Morse theory for forced oscillations of asymptotically linear Hamiltonian systems. Stock. Process. Phys. Geom., 1990, Teaneck, New Jersey: World Scientific Publishing 528-563

[23]

Long Y., Zhu C.. Closed characteristics on compact convex hypersurfaces in ℝ2n. Ann. Math., 2000, 155: 317-368

[24]

Long Y., Zhu C.. Maslov type index theorey for symplectiuc paths and spectral flow (II). Chin. Ann. Math., 2000, 21B(1): 89-108

[25]

Solimini S.. Morse index estimates in min-max theorems. Manuscripta Math., 1989, 63: 421-453

[26]

Zhu C., Long Y.. Maslov type index theorey for symplectiuc paths and spectral flow (I). Chin. Ann. Math., 1999, 20B(4): 413-424

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/