The inverse mean curvature flow in rotationally symmetric spaces

Qi Ding

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 27 -44.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 27 -44. DOI: 10.1007/s11401-010-0626-z
Article

The inverse mean curvature flow in rotationally symmetric spaces

Author information +
History +
PDF

Abstract

In this paper, the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied. It is proved that the flow converges to a unique geodesic sphere, i.e., every principle curvature of the hypersurfaces converges to a same constant under the flow.

Keywords

Asymptotic behavior / Inverse mean curvature flow / Hyperbolic space

Cite this article

Download citation ▾
Qi Ding. The inverse mean curvature flow in rotationally symmetric spaces. Chinese Annals of Mathematics, Series B, 2011, 32(1): 27-44 DOI:10.1007/s11401-010-0626-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cabezas-Rivas E., Miquel V.. Volume perserving mean curvature flow in the hyperbolic space. Indiana Univ. Math. J., 2007, 56(5): 2061-2086

[2]

Cabezas-Rivas E., Miquel V.. Volume-perserving mean curvature flow of revolution hypersurfaces in a rotationally symmetric space. Math. Z., 2009, 261: 489-510

[3]

Chen Y. Z.. Second Order Partial Differential Equations of Parabolic Type (in Chinese), 2003, Beijing: Peking University Press

[4]

Gerhardt C.. Flow of nonconvex hypersurfaces into spheres. J. Differential Geom., 1990, 32: 299-314

[5]

Huisken G., Ilmanen T.. Higher regularity of the inverse mean curvature flow. J. Differential Geom., 2008, 80: 433-451

[6]

Krylov N. V.. Nonlinear Elliptic and Parabolic Equations of the Second Order, 1987, Dordrechtn-Boston: D. Reidel Publishing Company

[7]

Li P.. Harmonic Functions and Applications to Complete Manifolds, 2004, Irvine: University of California

[8]

Simons J.. Minimal varieties in riemannian manifolds. Ann. Math., 1968, 88: 62-105

[9]

Urbas J. I. E.. An expansion of convex hypersurfaces. J. Differential Geom., 1991, 33: 91-125

[10]

Wang M. X.. Fundamental Theory of Partial Differential Equation (in Chinese), 2009, Beijing: Science Press

[11]

Xin Y. L.. Minimal Submanifolds and Related Topics. Nankai Tracts in Mathematics, Vol. 8, 2003, Singapore: World Scientific

[12]

Xin Y. L.. Mean curvature flow with convex gauss image. Chin. Ann. Math., 2008, 29B(2): 121-134

[13]

Zhu X. P.. Lectures on mean curvature flows. AMS/IP Studies in Advanced Mathematics, Vol. 32, 2002, Providence, RI: A. M. S.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/