PDF
Abstract
The authors study the existence of homoclinic type solutions for the following system of diffusion equations on ℝ × ℝ N$\left\{ \begin{gathered} \partial _t u - \Delta _x u + b \cdot \Delta _x u + au + V(t,x)v = H_v (t,x,u,v), \hfill \\ - \partial _t v - \Delta _x v - b \cdot \Delta _x v + av + V(t,x)u = H_u (t,x,u,v), \hfill \\ \end{gathered} \right.$ where z = (u, v): ℝ × ℝ N → ℝ m × ℝ m, a > 0, b = (b 1, …, b N) is a constant vector and V ε C(ℝ × ℝ N, ℝ), H ε C 1 (ℝ × ℝ N × ℝ2m, ℝ). Under suitable conditions on V(t,x) and the nonlinearity for H(t, x, z), at least one non-stationary homoclinic solution with least energy is obtained.
Keywords
Variational methods
/
Least energy solution
/
Hamiltonian system
Cite this article
Download citation ▾
Minbo Yang, Zifei Shen, Yanheng Ding.
On a class of infinite-dimensional Hamiltonian systems with asymptotically periodic nonlinearities.
Chinese Annals of Mathematics, Series B, 2011, 32(1): 45-58 DOI:10.1007/s11401-010-0625-0
| [1] |
Alama A., Li Y. Y.. On “multibump” bound states for certain semilinear elliptic equations. Indiana Univ. Math. J., 1992, 41: 983-1026
|
| [2] |
Arioli G., Szulkin A.. Homoclinic solutions of Hamiltonian systems with symmetry. J. Diff. Eqs., 1999, 158: 291-313
|
| [3] |
Barbu V.. Periodic solutions to unbounded Hamiltonian system. Discr. Contin. Dynam. Syst., 1995, 1: 277-283
|
| [4] |
Bartsch T., Ding Y. H.. Homoclinic solutions of an infinite-dimensional Hamiltonian system. Math. Z., 2002, 240: 289-310
|
| [5] |
Bartsch T., Ding Y. H.. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr., 2006, 279: 1267-1288
|
| [6] |
Brézis H., Nirenberg L.. Characterization of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Norm. Sup. Pisa., 1978, 5: 225-326
|
| [7] |
Clément P., Felmer P., Mitidieri E.. Homoclinic orbits for a class of infinite dimensional Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa., 1997, 24: 367-393
|
| [8] |
Coti-Zelati V., Rabinowitz P.. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 1991, 4: 693-727
|
| [9] |
Dautray R., Lions J. L.. Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, 1990, Berlin: Springer-Verlag
|
| [10] |
Ding Y. H.. Variational Methods for Strongly Indefinite Problems, Interdisciplinary Math. Sci., Vol. 7, 2007, Singapore: World Scientific Publishing
|
| [11] |
Ding Y. H.. Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms. Commun. Contemp. Math., 2006, 8: 453-480
|
| [12] |
Ding Y. H., Jeanjean L.. Homoclinic orbits for a nonperiodic Hamiltonian system. J. Diff. Eqs., 2007, 237: 473-490
|
| [13] |
Ding Y. H., Willem M.. Homoclinic orbits of a Hamiltonian system. Z. Angew. Math. Phys., 1999, 50: 759-778
|
| [14] |
Ding Y. H., Luan S., Willem M.. Solutions of a system of diffusion equations. J. Fixed Point Theory Appl., 2007, 2: 117-139
|
| [15] |
Ding Y. H., Wei J. C.. Stationary states of nonlinear Dirac equations with general potentials. Rev. Math. Phys., 2008, 20: 1007-1032
|
| [16] |
Esteban M., Séré E.. Stationary ststes of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys., 1995, 171: 323-250
|
| [17] |
de Figueiredo D., Felmer P.. On superquadratic elliptic systems. Trans. Amer. Math. Soc., 1994, 343: 99-116
|
| [18] |
de Figueiredo D. G., Yang J. F.. Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal., T.M.A., 1998, 33: 211-234
|
| [19] |
Hofer H., Wysocki K.. First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 1990, 288: 483-503
|
| [20] |
Hulshof J., van der Vorst R.. Differential systems with strongly indefinite variational structure. J. Funct. Anal., 1993, 114: 32-58
|
| [21] |
Kryszewki W., Szulkin A.. Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Diff. Equations., 1998, 3: 441-472
|
| [22] |
Lions J. L.. Optimal Control of Systems Governed by Partial Differential Equations, 1971, New York: Springer-Verlag
|
| [23] |
Lions P. L.. The concentration-compactness principle in the calculus of variations: The locally compact cases, Part II. Ann. Inst. H. Poincaré, Anal. Nonlinéaire., 1984, 1: 223-283
|
| [24] |
Li G. B., Yang J. F.. Asymptotically linear elliptic systems. Comm. Part. Diff. Eqs., 2004, 29: 925-954
|
| [25] |
Nagasawa M.. Schrödinger Equations and Diffusion Theory, 1993, Basel: Birkhäuser
|
| [26] |
Reed M., Simon B.. Methods of Mathematical Physics, Vol. I–IV, 1978, New York: Academic Press
|
| [27] |
Séré E.. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z., 1992, 209: 27-42
|