Compatibility and Schur complements of operators on Hilbert C*-module

Xiaochun Fang , Jing Yu

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 69 -88.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 69 -88. DOI: 10.1007/s11401-010-0623-2
Article

Compatibility and Schur complements of operators on Hilbert C*-module

Author information +
History +
PDF

Abstract

Let E be a Hilbert C*-module, and S be an orthogonally complemented closed submodule of E. The authors generalize the definitions of S-complementability and S-compatibility for general (adjointable) operators from Hilbert space to Hilbert C*-module, and discuss the relationship between each other. Several equivalent statements about S-complementability and S-compatibility, and several representations of Schur complements of S-complementable operators (especially, of S-compatible operators and of positive S-compatible operators) on a Hilbert C*-module are obtained. In addition, the quotient property for Schur complements of matrices is generalized to the quotient property for Schur complements of S-complementable operators and S*-complementable operators on a Hilbert C*-module.

Keywords

Hilbert C*-module / Compatibility / Complementability / Schur complement / Quotient property

Cite this article

Download citation ▾
Xiaochun Fang, Jing Yu. Compatibility and Schur complements of operators on Hilbert C*-module. Chinese Annals of Mathematics, Series B, 2011, 32(1): 69-88 DOI:10.1007/s11401-010-0623-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson W. N., Trapp G. E.. Shorted operators II. SIAM J. Appl. Math., 1975, 28: 60-71

[2]

Ando T.. Generalized Schur complements. Linear Algebra Appl., 1979, 27: 173-186

[3]

Andruchow E., Corach G., Stojanoff D.. Geometry of oblique projections. Studia Math., 1999, 137: 61-79

[4]

Brezinski C., Redivo-Zaglia M.. A Schur complement approach to a general extrapolation algorithm. Linear Algebra Appl., 2003, 368: 279-301

[5]

Carlson D.. What are Schur complements, anyway?. Linear Algebra Appl., 1986, 74: 257-275

[6]

Choi M. D., Davis C.. The spectral mapping theorem for joint approximate point spectrum. Bull. Amer. Math. Soc., 1974, 80: 317-321

[7]

Choi M. D., Li C. K.. The ultimate estimate of the upper norm bound for the summation of operators. J. Funct. Anal., 2006, 232: 455-476

[8]

Corach G., Maestripieri A., Stojanoff D.. Oblique projections and abstract splines. J. Approx. Theory, 2002, 117: 189-206

[9]

Corach G., Maestripieri A., Stojanoff D.. Oblique projections and Schur complements. Acta Sci. Math. (Szeged), 2001, 67: 439-459

[10]

Corach G., Maestripieri A., Stojanoff D.. Generalized Schur complements and oblique projections. Linear Algebra Appl., 2002, 341: 259-272

[11]

Crabtree D. E., Haynsworth E. V.. An identity for the Schur complement of a matrix. Proc. Amer. Math. Soc., 1969, 22: 364-366

[12]

Fang X. C.. The represention of topological groupoid. Acta Math. Sinica, 1996, 39: 6-15

[13]

Fang X. C.. The induced representation of C*-groupoid dynamical system. Chin. Ann. Math., 1996, 17B(1): 103-114

[14]

Fang X. C.. The realization of multiplier Hilbert bimodule on bidule space and Tietze extension theorem. Chin. Ann. Math., 2000, 21B(3): 375-380

[15]

Fang X. C., Yu J., Yao H.. Solutions to operator equations on Hilbert C*-modules. Linear Algebra Appl., 2009, 431: 2142-2153

[16]

Giribet J. I., Maestripieri A., Peria F. M.. Shorting selfadjoint operators in Hilbert spaces. Linear Algebra Appl., 2008, 428: 1899-1911

[17]

Hassi S., Nordstrom K.. On projections in a space with an indefinite metric. Linear Algebra Appl., 1994, 208–209: 401-417

[18]

Haynsworth E.. Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra Appl., 1968, 1: 73-81

[19]

Jensen K. K., Thomsen K.. Elements of KK-theory, 1991, Boston: Birkhauser

[20]

Karaev M. T.. Berezin symbol and invertibility of operators on the functional Hilbert spaces. J. Funct. Anal., 2006, 238: 181-192

[21]

Khatri C. G., Mitra S. K.. Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 1976, 31: 579-585

[22]

Krein M. G.. The theory of self-adjoint extensions of semibounded Hermitian operators and its applications. Mat. Sb. (N. S.), 1947, 20(62): 431-495

[23]

Lance E. C.. Hilbert C*-modules: A toolkit for operator algebraists, 1995, Cambridge: Cambridge University Press

[24]

Lauzon M. M., Treil S.. Common complements of two subspaces of a Hilbert space. J. Funct. Anal., 2004, 212: 500-512

[25]

Magajna M.. Hilbert C*-modules in which all closed submodules are complemented. Proc. Amer. Math. Soc., 1997, 125: 849-852

[26]

Ostrowski A.. A new proof of Haynsworths quotient formula for Schur complements. Linear Algebra Appl., 1971, 4: 389-392

[27]

Pasternak-Winiarski Z.. On the dependence of the orthogonal projector on deformations of the scalar product. Studia Math., 1998, 128: 1-17

[28]

Pekarev E. L.. Shorts of operators and some extremal problems. Acta Sci. Math. (Szeged), 1992, 56: 147-163

[29]

Ptak V.. Extremal operators and oblique projections. Casopis pro pestovani Matematiky, 1985, 110: 343-350

[30]

Schweizer J.. A description of Hilbert C*-modules in which all closed submodules are orthogonally closed. Proc. Amer. Math. Soc., 1999, 127: 2123-2125

[31]

Wegge-Olsen N. E.. K-Theory and C*-Algebras: A Friendly Approach, 1993, Oxford: Oxford University Press

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/