Compressible limit of the nonlinear Schrödinger equation with different-degree small parameter nonlinearities

Zaihui Gan , Boling Guo

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 105 -122.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 105 -122. DOI: 10.1007/s11401-010-0620-5
Article

Compressible limit of the nonlinear Schrödinger equation with different-degree small parameter nonlinearities

Author information +
History +
PDF

Abstract

The authors study the compressible limit of the nonlinear Schrödinger equation with different-degree small parameter nonlinearities in small time for initial data with Sobolev regularity before the formation of singularities in the limit system. On the one hand, the existence and uniqueness of the classical solution are proved for the dispersive perturbation of the quasi-linear symmetric system corresponding to the initial value problem of the above nonlinear Schrödinger equation. On the other hand, in the limit system, it is shown that the density converges to the solution of the compressible Euler equation and the validity of the WKB expansion is justified.

Keywords

Nonlinear Schrödinger equation / Compressible limit / Compressible Euler equation / WKB expansion

Cite this article

Download citation ▾
Zaihui Gan, Boling Guo. Compressible limit of the nonlinear Schrödinger equation with different-degree small parameter nonlinearities. Chinese Annals of Mathematics, Series B, 2011, 32(1): 105-122 DOI:10.1007/s11401-010-0620-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grenier E.. Limite semi-classique de I’équation de Schrödinger non linéaire en temps petit. C. R. Acad. Sci. Paris Ser. I Math., 1995, 320: 691-694

[2]

Grenier E.. Semiclassical limit of the nonlinear Schrödinger equation in small time. Proceeding of AMS, 1998, 126(2): 523-530

[3]

Jin S., Levermore C. D., McLaughlin D. W.. The behaviour of solutions of the NLS equation in the semiclassical limit, singular limits of dispersive waves. NATO ASI, Series B: Physics, 1994, 320: 235-256

[4]

Ginibre J., Velo G.. On the global Cauchy problem for some nonlinear Schrödinger equation. Ann. Inst. H. Poincaré, Anal. non linéaire, 1984, 1: 309-323

[5]

Nagasawa M.. Schrödinger Equation and Diffusion Theory, 1993, Basel: Birkhäuser Verlag

[6]

Schochet H., Weinstein M.. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun. Math. Phys., 1986, 106: 569-580

[7]

Majda A.. Compressible fluid flow and systems of conservation laws in several space variables, 1984, New York: Springer-Verlag

[8]

Gérard, P., Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire EDP de l’École Polytechnique, Lecture n 0 XIII, Palaiseau, France, 1992–1993.

[9]

Yosida K.. Functional Analysis, 1980, Berlin, Heidelberg: Springer-Verlag

[10]

Min H., Park Q. H.. Scattering of solitons in the derivative nonlinear Schrödinger model. Physics Letter B, 1996, 388: 621-625

[11]

Mio K., Ogino T., Minamy K., Takeda S.. Modified nonlinear Schrödinger equation for Alfv’en waves propagating along the magnetic field in cold plasma. J. Phys. Soc. Japan, 1976, 41: 265-273

[12]

Mjolhus E.. On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys., 1976, 16: 265-273

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/