Affine structures on a ringed space and schemes

Fengwen An

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 139 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (1) : 139 -160. DOI: 10.1007/s11401-010-0618-z
Article

Affine structures on a ringed space and schemes

Author information +
History +
PDF

Abstract

The author first introduces the notion of affine structures on a ringed space and then obtains several related properties. Affine structures on a ringed space, arising from complex analytical spaces of algebraic schemes, behave like differential structures on a smooth manifold.

As one does for differential manifolds, pseudogroups of affine transformations are used to define affine atlases on a ringed space. An atlas on a space is said to be an affine structure if it is maximal. An affine structure is said to be admissible if there is a sheaf on the underlying space such that they are coincide on all affine charts, which are in deed affine open sets of a scheme. In a rigour manner, a scheme is defined to be a ringed space with a specified affine structure if the affine structures make a contribution to the cases such as analytical spaces of algebraic schemes. Particularly, by the whole of affine structures on a space, two necessary and sufficient conditions, that two spaces are homeomorphic and that two schemes are isomorphic, coming from the main theorems of the paper, are obtained respectively. A conclusion is drawn that the whole of affine structures on a space and a scheme, as local data, encode and reflect the global properties of the space and the scheme, respectively.

Keywords

Affine structure / Pseudogroup of affine transformations / Ringed space / Scheme

Cite this article

Download citation ▾
Fengwen An. Affine structures on a ringed space and schemes. Chinese Annals of Mathematics, Series B, 2011, 32(1): 139-160 DOI:10.1007/s11401-010-0618-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An, F. W., The conjugates of algebraic schemes, e-preprint. arXiv: math.AG/0702493.

[2]

Deligne P., Milne J., Ogus A. Hodge Cycles, Motives, and Shimura Varieties, 1982, Berlin: Springer-Verlag

[3]

Demazure M., Grothendieck A.. Propriétés Générales des Schémas en Groupes (SGA 13), 1970, New York: Springer-Verlag

[4]

Grothendieck A., Dieudonné J.. Éléments de Géoemétrie Algébrique (EGA 1, 2, 3, 4), 1960, Paris: IHES

[5]

Grothendieck A.. Revêtements Étales et Groupe Fondamental (SGA 1), 1971, New York: Springer-Verlag

[6]

Guillemin, V. and Sternberg, S., Deformation Theory of Pseudogroup Structures, Memoirs of the Amer. Math. Soc., Vol. 1, No. 64, Providence, RI, 1966.

[7]

Hartshorne R.. Algebraic Geometry, 1977, Berlin: Springer-Verlag

[8]

Kobayashi S., Nomizu K.. Foundations of Differential Geometry, 1, 1963, New York: Interscience Publishers

[9]

Mac Lane S.. Categories for the Working Mathematicians, 1971, Berlin: Springer-Verlag

[10]

Milne, J. and Suh, J., Nonhomeomorphic conjugates of connected Shimura varieties, e-preprint. arXiv: 0804.1953

[11]

Milnor J.. On manifolds homeomorphic to the 7-Sphere. Ann. of Math., 1956, 64: 399-405

[12]

Serre J.-P.. Géométrie algébrique et géométrie analytique. Annales de l’Inst. Fourier, 1956, 6: 1-42

[13]

Serre J.-P.. Exemples de variétés projectives conjuguées non homéomorphes. C. R. Acad. Sc. Paris, 1964, 258: 4194-4196

[14]

Shafarevich I. R.. Basic Algebraic Geometry, 2, 1994, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/