Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves

Jerry L. Bona , Jean-Claude Saut

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 793 -818.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 793 -818. DOI: 10.1007/s11401-010-0617-0
Article

Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves

Author information +
History +
PDF

Abstract

Addressed here is the occurrence of point singularities which owe to the focusing of short or long waves, a phenomenon labeled dispersive blow-up. The context of this investigation is linear and nonlinear, strongly dispersive equations or systems of equations. The present essay deals with linear and nonlinear Schrödinger equations, a class of fractional order Schrödinger equations and the linearized water wave equations, with and without surface tension. Commentary about how the results may bear upon the formation of rogue waves in fluid and optical environments is also included.

Keywords

Rogue waves / Dispersive blow-up / Nonlinear dispersive equations / Nonlinear Schrödinger equation / Water wave equations / Propagation in optical cables / Weak turbulence models

Cite this article

Download citation ▾
Jerry L. Bona, Jean-Claude Saut. Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves. Chinese Annals of Mathematics, Series B, 2010, 31(6): 793-818 DOI:10.1007/s11401-010-0617-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramowitz M., Stegun I. A.. Handbook of Mathematical Functions, 1964, New York: Dover

[2]

Akhmediev N., Soto-Crespo J. M., Ankiewicz A.. How to excite a rogue wave. Phy. Rev. A, 2009, 80: 043818

[3]

Ben-Artzi M., Saut J.-C.. Uniform decay estimates for a class of oscillatory integrals and applications. Diff. Int. Eqs., 1999, 12: 137-145

[4]

Benjamin T. B., Bona J. L., Mahony J. J.. Model equations for long waves in nonlinear, dispersive media. Philos. Trans. Royal Soc. London, Ser. A, 1972, 272: 47-78

[5]

Bona J. L., Chen H. Q.. Well-posedness for regularized dispersive wave equations. Disc. Cont. Dyn. Systems A, 2009, 23: 1253-1275

[6]

Bona J. L., Chen M., Saut J.-C.. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci., 2002, 12: 283-318

[7]

Bona J. L., Chen M., Saut J.-C.. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory. Nonlinearity, 2004, 17: 925-952

[8]

Bona J. L., Saut J.-C.. Dispersive blow-up of solutions of generalized Korteweg-de Vries equations. J. Diff. Eqs., 1993, 103: 3-57

[9]

Bona J. L., Tzvetkov N.. Sharp well-posedness results for the BBM equation. Disc. Cont. Dyn. Systems A, 2009, 23: 1241-1252

[10]

Brenner P.. The Cauchy problem for systems in l p and l p,α. Ark. Mat., 1973, 11: 75-101

[11]

Constantin P., Saut J.-C.. Local smoothing properties of dispersive equations. J. Amer. Math. Soc., 1988, 1: 413-439

[12]

Dias F., Guyenne P., Pushkarev A. N. Wave turbulence in one-dimensional models. Physica D, 2001, 152–153: 573-619

[13]

Dudley J.. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 2006, 78: 1135-1184

[14]

Dudley J., Genty G., Eggleton B. J.. Harnessing and control of optical rogue waves in supercontinum generation. Optics Express, 2008, 16: 3644-3651

[15]

Dysthe H., Krogstad E., Müller P.. Oceanic Rogue Waves. Ann. Rev. Fluid Mech., 2008, 40: 287-310

[16]

Ghidaglia, J.-M. and Jaffard, S., Personal communication.

[17]

Hörmander L.. Estimates for translation invariant operators in L p. Acta Math., 1960, 104: 93-140

[18]

Kharif C., Pelinovsky E.. Physical mechanism of rogue wave phenomenon. European J. of Mechanics, B/Fluids, 2003, 22: 603-634

[19]

Kharif C., Pelinovsky E., Slunyaev A.. RogueWaves in the Ocean, 2009, Berlin-Heidelberg: Springer-Verlag

[20]

Linares F., Scialom M.. On the smoothing properties of solutions to the modified Korteweg-de Vries equation. J. Diff. Eqs., 1993, 106: 141-154

[21]

Miyachi A.. On some singular Fourier multipliers. J. Fac. Sci. Tokyo Section I A, 1981, 28: 267-315

[22]

Sidi A., Sulem C., Sulem P. L.. On the long time behavior of a generalized KdV equation. Acta Applicandae Mathematicae, 1986, 7: 35-47

[23]

Solli D. R., Ropers C., Koonath P., Jalali B.. Optical rogue waves. Nature, 2007, 450: 1054-1057

[24]

Stenflo, L. and Marklund, M., Rogue waves in the atmosphere, 2009. arXiv:0911.1654v1

[25]

Tsutsumi Y.. L 2 solutions for the nonlinear Schrödinger equation and nonlinear groups. Funkcial. Ekvac., 1987, 30: 115-125

[26]

Voronovich V. V., Shrira V. I., Thomas G.. Can bottom friction suppress “freak wave” formation. J. Fluid Mech., 2008, 604: 263-296

[27]

Wainger, S., Special trigonometric series in k-dimensions, Mem. American Math. Soc., 59, 1965.

[28]

Whitham G. B.. Linear and Nonlinear Waves, 1974, New York: John Wiley & Sons

[29]

Zakharov V. E.. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys., 1968, 9: 86-94

AI Summary AI Mindmap
PDF

317

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/