On a strongly damped wave equation for the flame front

Claude-Michel Brauner , Luca Lorenzi , Gregory I. Sivashinsky , Chuanju Xu

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 819 -840.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 819 -840. DOI: 10.1007/s11401-010-0616-1
Article

On a strongly damped wave equation for the flame front

Author information +
History +
PDF

Abstract

In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.

Keywords

Front dynamics / Wave equation / Kuramoto-Sivashinsky equation / Stability / Analytic semigroups / Spectral method

Cite this article

Download citation ▾
Claude-Michel Brauner, Luca Lorenzi, Gregory I. Sivashinsky, Chuanju Xu. On a strongly damped wave equation for the flame front. Chinese Annals of Mathematics, Series B, 2010, 31(6): 819-840 DOI:10.1007/s11401-010-0616-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brauner C.-M., Frankel M. L., Hulshof J. On the κ-θ model of cellular flames: existence in the large and asymptotics. Discrete Contin. Dyn. Syst. Ser. S, 2008, 1: 27-39

[2]

Brauner C.-M., Frankel M. L., Hulshof J., Sivashinsky G. I.. Weakly nonlinear asymptotic of the κ-θ model of cellular flames: the Q-S equation. Interfaces Free Bound., 2005, 7: 131-146

[3]

Brauner C.-M., Hulshof J., Lorenzi L.. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic Related Models, 2009, 2: 109-134

[4]

Brauner, C.-M., Hulshof, J. and Lorenzi, L., Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem, submitted.

[5]

Brauner C.-M., Hulshof J., Lorenzi L., Sivashinsky G. I.. A fully nonlinear equation for the flame front in a quasi-steady combustion model. Discrete Contin. Dyn. Syst. Ser. A, 2010, 27: 1415-1446

[6]

Brauner C.-M., Lunardi A.. Instabilities in a two-dimensional combustion model with free boundary. Arch. Ration. Mech. Anal., 2000, 154: 157-182

[7]

Carvalho, A. N. and Cholewa, J. W., Strongly damped wave equations in W 1,p(Ω) × L p(Ω), Discrete Contin. Dyn. Syst., Supplement, 2007, 230–239.

[8]

Frankel M. L., Gordon P., Sivashinsky G. I.. A stretch-temperature model for flame-flow interaction. Physics Letters A, 2007, 361: 356-359

[9]

Henry D.. Geometric theory of semilinear parabolic equations, 1981, Berlin, New York: Springer-Verlag

[10]

Hyman J. M., Nicolaenko B.. The Kuramoto-Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D, 1986, 18: 113-126

[11]

Lorenzi L.. Regularity and analyticity in a two-dimensional combustion model. Adv. Differential Equations, 2002, 7: 1343-1376

[12]

Lorenzi L.. A free boundary problem stemmed from combustion theory, I, Existence, uniqueness and regularity results. J. Math. Anal. Appl., 2002, 274: 505-535

[13]

Lorenzi L.. A free boundary problem stemmed from combustion theory, II, Stability, instability and bifurcation results. J. Math. Anal. Appl., 2002, 275: 131-160

[14]

Lorenzi L.. Bifurcation of codimension two in a combustion model. Adv. Math. Sci. Appl., 2004, 14: 483-512

[15]

Lunardi A.. Analytic semigroups and optimal regularity in parabolic problems, 1995, Basel: Birkhäuser

[16]

Matkowsky B. J., Sivashinsky G. I.. An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math., 1979, 37: 686-699

[17]

Murray J. D.. Mathematical Biology, Biomathematics Texts, 1989 2nd edition Berlin: Springer-Verlag

[18]

Sivashinsky G. I.. Nonlinear analysis of hydrodynamic instability in laminar flames, Part 1, Derivation of basic equations. Acta Astronaut., 1977, 4: 1177-1206

[19]

Sivashinsky G. I.. On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math., 1980, 39: 67-82

[20]

Temam R.. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, 1997 2nd edition Berlin, Heidelberg, New York: Springer

[21]

Turing A. M.. The chemical basis of morphogenesis. Phil. Transl. Roy. Soc. Lond., 1952, B237: 37-72

[22]

Xu C. J., Tang T.. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal., 2006, 44(4): 1759-1779

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/