Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons

Hongli Jia , Benyu Guo

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 855 -878.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 855 -878. DOI: 10.1007/s11401-010-0614-3
Article

Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons

Author information +
History +
PDF

Abstract

The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.

Keywords

Legendre quasi-orthogonal approximation / Petrov-Galerkin spectral element method / Mixed inhomogeneous boundary value problems

Cite this article

Download citation ▾
Hongli Jia, Benyu Guo. Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons. Chinese Annals of Mathematics, Series B, 2010, 31(6): 855-878 DOI:10.1007/s11401-010-0614-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernardi C., Maday Y.. Ciarlet P. G., Lions J. L.. Spectral methods. Handbook of Numerical Analysis, 1997, Amsterdam: Elsevier 209-486

[2]

Bernardi C., Maday Y., Rapetti F.. Discretisations Variationnelles de Problemes aux Limites Elliptique, 2004, Berlin: Springer-Verlag

[3]

Boyd J. P.. Chebyshev and Fourier Spectral Methods, 2001 2nd edition Mineda, New York: Dover Publication Inc.

[4]

Canuto C., Hussaini M. Y., Quarteroni A. Spectral Methods: Fundamentals in Single Domains, 2006, Berlin: Springer-Verlag

[5]

Canuto C., Hussaini M. Y., Quarteroni A. Spectral Methods: Evolution to complex Geometries and Applications to Fluid Dynamics, 2007, Berlin: Springer-Verlag

[6]

Funaro D.. Polynomial Approxiamtions of Differential Equations, 1992, Berlin: Springer-Verlag

[7]

Gottlieb D., Orszag S. A.. Numerical Analysis of Spectral Methods: Theory and Applications, 1977, Philadelphia: SIAMCBMS

[8]

Guo B. Y.. Spectral Methods and Their Applications, 1998, Singapore: World Scietific

[9]

Guo B. Y.. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl., 2000, 243: 373-408

[10]

Guo B. Y., Jia H. L.. Spectral method on quadrilaterals. Math. Comp., 2010, 79: 2237-2264

[11]

Guo B. Y., Shen J., Wang L. L.. Optical spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comp., 2006, 27: 305-322

[12]

Guo B. Y., Wang L. L.. Jacobi approximations in non-uniformly Jacobi-Weighted Sobolev spaces. J. Appl. Theo., 2004, 128: 1-41

[13]

Guo B. Y., Wang L. L.. Non-isotropic Jacobi spectral method. Cont. Math., 2003, 329: 157-164

[14]

Guo B. Y., Wang L. L.. Error analysis of spectral method on a triangle. Adv. Comp. Math., 2005, 128: 1-24

[15]

Guo B. Y., Wang T. J.. Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an finite channel. Math. Comp., 2009, 78: 129-151

[16]

Guo B. Y., Wang T. J.. Composite Laguerre-Legendre spectral method for exterior problems. Adv. Comp. Math., 2010, 32: 393-429

[17]

Karniadakis G. E., Sherwin S. J.. Spectral/hp Element Methods for CFD, 2005 2nd edition Oxford: Oxford University Press

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/