Boundary shape control of the Navier-Stokes equations and applications
Kaitai Li , Jian Su , Aixiang Huang
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 879 -920.
Boundary shape control of the Navier-Stokes equations and applications
In this paper, the geometrical design for the blade’s surface $\Im $ in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations. The objective function is the sum of a global dissipative function and the power of the fluid. The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations. The Euler-Lagrange equations of the optimal control problem are derived, which are an elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations. The authors also prove the existence of the solution of the optimal control problem, the existence of the solution of the Navier-Stokes equations with mixed boundary conditions, the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade’s surface and the existence of solutions of the equations for the Gäteaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.
Blade / Boundary shape control / General minimal surface / Navier-Stokes equations / Euler-Lagrange equations
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
/
| 〈 |
|
〉 |