PDF
Abstract
For any n-dimensional compact Riemannian manifold (M, g) without boundary and another compact Riemannian manifold (N, h), the authors establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0, T),W 1,n). For the hydrodynamic flow (u, d) of nematic liquid crystals in dimensions n = 2 or 3, it is shown that the uniqueness holds for the class of weak solutions provided either (i) for n = 2, u ∈ L t ∞ L x 2 ∩ L t 2 H x 1, ▿ P ∈ L t 4/3 L x 4/3, and ▿d ∈ L t ∞ L x 2 ∩ L t 2 H x 2; or (ii) for n = 3, u ∈ L t ∞ L x 2 ∩ L t 2 H x 1 ∩ C ([0, T), L n), P ∈ L t n/2 L x n/2, and ▿d ∈ L t 2 L x 2 ∩ C ([0, T), L n). This answers affirmatively the uniqueness question posed by Lin-Lin-Wang. The proofs are very elementary.
Keywords
Hydrodynamic flow
/
Harmonic maps
/
Nematic liquid crystals
/
Uniqueness
Cite this article
Download citation ▾
Fanghua Lin, Changyou Wang.
On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals.
Chinese Annals of Mathematics, Series B, 2010, 31(6): 921-938 DOI:10.1007/s11401-010-0612-5
| [1] |
Caffarelli L., Kohn R., Nirenberg L.. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 1982, 35: 771-831
|
| [2] |
Chang K.. Heat flow and boundary value problem for harmonic maps. Annales de l’institut Henri Poincaré Analyse nonlinairé, 1989, 6(5): 363-395
|
| [3] |
Chang K., Ding W., Ye R.. Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differential Geom., 1992, 36: 507-515
|
| [4] |
Chen Y., Ding W.. Blow-up and global existence for heat flows of harmonic maps. Invent. Math., 1990, 99(3): 567-578
|
| [5] |
Chen Y., Lin F.. Evolution of harmonic maps with Dirichlet boundary conditions. Comm. Anal. Geom., 1993, 1(3–4): 327-346
|
| [6] |
Chen Y., Struwe M.. Existence and partial regularity results for the heat flow for harmonic maps. Math. Z., 1989, 201(1): 83-103
|
| [7] |
Ericksen J. L.. Hydrostatic theory of liquid crystal. Arch. Rational Mech. Anal., 1962, 9: 371-378
|
| [8] |
Escauriaza L., Serëgin G., Sverak V.. L 3,∞-solutions of Navier-Stokes equations and backward uniqueness (in Russian). Uspekhi Mat. Nauk, 2003, 58(2): 3-44 Translation in Russian Math. Surveys, 58(2), 2003, 211–250
|
| [9] |
Freire A.. Uniqueness for the harmonic map flow from surfaces to general targets. Comment Math. Helvetici, 1995, 70(1): 310-338
|
| [10] |
Giga Y.. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Diff. Eqns., 1986, 61: 186-212
|
| [11] |
Huang T., Wang C. Y.. Notes on the regularity of harmonic map systems. Proc. Amer. Math. Soc., 2010, 138: 2015-2023
|
| [12] |
Kato T.. Strong L p solutions of the Navier-Stokes equations in ℝm, with applications to weak solutions. Math. Z., 1984, 187: 471-480
|
| [13] |
Leray J.. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 1934, 63: 193-248
|
| [14] |
Leslie F. M.. Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal., 1968, 28: 265-283
|
| [15] |
Lin F. H.. Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Comm. Pure Appl. Math., 1989, 42: 789-814
|
| [16] |
Lin F. H.. A new proof of the Caffarelli-Kohn-Nirenberg Theorem. Comm. Pure Appl. Math., 1998, LI: 0241-0257
|
| [17] |
Lin F. H., Liu C.. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math., 1995, XLVIII: 501-537
|
| [18] |
Lin F. H., Liu C.. Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Dis. Cont. Dyn. Sys., 1996, 2: 1-23
|
| [19] |
Lin F. H., Lin J. Y., Wang C. Y.. Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal., 2010, 197(1): 297-336
|
| [20] |
Seregin G.. On the number of singular points of weak solutions to the Navier-Stokes equations. Comm. Pure Appl. Math., 2001, LIV: 1019-1028
|
| [21] |
Struwe M.. On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helvetici, 1985, 60: 558-581
|
| [22] |
Wang C. Y.. A remark on harmonic map flows from surfaces. Diff. Int. Eqs., 1999, 12(2): 161-166
|