Quasi-hydrostatic primitive equations for ocean global circulation models

Carine Lucas , Madalina Petcu , Antoine Rousseau

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 939 -952.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 939 -952. DOI: 10.1007/s11401-010-0611-6
Article

Quasi-hydrostatic primitive equations for ocean global circulation models

Author information +
History +
PDF

Abstract

Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.

Keywords

Hydrostatic approximation / Coriolis force / Ocean global circulation models / Primitive equations / Traditional approximation

Cite this article

Download citation ▾
Carine Lucas, Madalina Petcu, Antoine Rousseau. Quasi-hydrostatic primitive equations for ocean global circulation models. Chinese Annals of Mathematics, Series B, 2010, 31(6): 939-952 DOI:10.1007/s11401-010-0611-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burger A. P.. The potential vorticity equation: from planetary to small scale. Tellus, 1991, 43A: 191-197

[2]

Benoit Cushman-Roisin Introduction to Geophysical Fluid Dynamics, 1994, Indiana: Prentice-Hall

[3]

Cao C. S., Titi E. S.. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. of Math., 2007, 166(2): 245-267

[4]

Dellar P. J., Salmon R.. Shallow water equations with a complete coriolis force and topography. Physics of Fluids, 2005, 17(10): 106601

[5]

Eckart C.. Hydrodynamics of Oceans and Atmospheres, 1960, New York: Pergamon Press

[6]

Gill A. E.. Atmosphere-Ocean Dynamics, 1982, New York: Academic Press

[7]

Kobelkov G. M.. Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech., 2007, 9(4): 588-610

[8]

Kukavica I., Ziane M.. On the regularity of the primitive equations of the ocean. Nonlinearity, 2007, 20: 2739-2753

[9]

Lucas C., Rousseau A.. New developments and cosine effect in the viscous shallow water and quasigeostrophic equations. Multiscale Modeling and Simulations, 2008, 7(2): 793-813

[10]

Lucas C., Rousseau A.. Cosine effect in ocean models. Discrete Contin. Dyn. Syst. Series B, 2010, 13(4): 841-857

[11]

Lions J. L., Temam R., Wang S. H.. New formulations of the primitive equations of atmosphere and applications. Nonlinearity, 1992, 5(2): 237-288

[12]

Lions J. L., Temam R., Wang S. H.. On the equations of the large-scale ocean. Nonlinearity, 1992, 5(5): 1007-1053

[13]

Madec G.. NEMO ocean engine, Note du Pole de Modélisation, 2008, France: Institut Pierre-Simon Laplace (IPSL)

[14]

Madec G., Delecluse P., Imbard M., Lévy C.. OPA 8.1 Ocean General Circulation Model reference manual, Note du Pole de Modélisation, 1999, France: Institut Pierre-Simon Laplace (IPSL)

[15]

Pedlosky J.. Geophysical Fluid Dynamics, 1987 2nd ed. New York: Springer-Verlag

[16]

Phillips N. A.. The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmospheric Sciences, 1966, 23: 626-628

[17]

Phillips N. A.. Reply (to George Veronis). J. Atmospheric sciences, 1968, 25: 1155-1157

[18]

Petcu M., Temam R., Ziane M.. Ciarlet P. G.. Some mathematical problems in geophysical fluid dynamics, Handbook of Numerical Analysis, Special Volume on Computational Methods for the Oceans and the Atmosphere, 2008, Amsterdam: Elsevier

[19]

Shchepetkin A. F., McWilliams J. C.. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 2005, 9(4): 347-404

[20]

Veronis G.. Comments on phillips proposed simplification of the equations of motion for a shallow rotating atmosphere. J. Atmospheric Sciences, 1968, 25: 1154-1155

[21]

Wangsness R. K.. Comments on “the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’ ”. J. Atmospheric Sciences, 1970, 27: 504-506

[22]

White A. A., Bromley R. A.. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the coriolis force. Q. J. R. Meteorol. Soc., 1995, 121: 399-418

[23]

White A. A., Hoskins B. J., Roulstone I., Staniforth A.. Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc., 2005, 131: 2081-2107

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/