Lipschitz properties in variable exponent problems via relative rearrangement

Jean-Michel Rakotoson

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 991 -1006.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (6) : 991 -1006. DOI: 10.1007/s11401-010-0608-1
Article

Lipschitz properties in variable exponent problems via relative rearrangement

Author information +
History +
PDF

Abstract

The author first studies the Lipschitz properties of the monotone and relative rearrangement mappings in variable exponent Lebesgue spaces completing the result given in [9]. This paper is ended by establishing the Lipschitz properties for quasilinear problems with variable exponent when the right-hand side is in some dual spaces of a suitable Sobolev space associated to variable exponent.

Keywords

Monotone rearrangement / Relative rearrangement / Variable exponents / Quasi-linear equations

Cite this article

Download citation ▾
Jean-Michel Rakotoson. Lipschitz properties in variable exponent problems via relative rearrangement. Chinese Annals of Mathematics, Series B, 2010, 31(6): 991-1006 DOI:10.1007/s11401-010-0608-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvino A., Lions P. L., Trombetti G.. On optimization problems with prescribed rearragements. Anal. T. M. A., 1989, 13: 185-220

[2]

Acerbi E., Mingione G.. Regularity results for stationary electro-rheological fluids. Ach. Rational Mech. Anal., 2002, 164: 213-259

[3]

Betta, M. F. and Mercaldo, A., Continuous dependence on the data for nonlinear elliptic equations via symmetrization, Rendiconti di Lincei, to appear.

[4]

Capone C., Cruz-Uribe D., Fiorenza A.. The factional maximal operator on variable L p(x)(Ω) spaces. Rev. Mat. Iberoamericana, 2007, 23(3): 743-770

[5]

Diening L.. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(·) and W k,p(·). Math. Nachr., 2004, 268: 31-43

[6]

Diáz J. I., Nagai T., Rakotoson J. M.. Symmetrization techniques on unbounded domains: Application to a chemotaxis system on ℝN. J. Diff. Eqs., 1998, 145(1): 156-183

[7]

Edmunds D. E., Meskhi A.. Potential-type operators in L p(x) spaces. J. Anal. Its Appl., 2002, 21(3): 1-11

[8]

Fiorenza A., Rakotoson J. M.. New properties of small Lebesgue spaces and their applications. Math. Ann., 2003, 326: 543-561

[9]

Fiorenza A., Rakotoson J. M.. Relative rearrangement and Lebesgue space L p(·) with variable exponent. J. Math. Pures Appl., 2007, 88: 506-521

[10]

Ferone A., Volpicelli R.. Some relations between pseudo-rearrangement and relative rearrangement. Nonlinear Anal., 2000, 41: 855-869

[11]

Fan X., Zhao D.. On spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. and Appl., 2000, 263: 424-446

[12]

Kováčik O., Rákosník J.. On spaces L p(x) and W k,p(x). Czech. Math. J., 1996, 41: 167-177

[13]

Kakilashvili V., Samko S.. Singular integrals and potential in some banach function spaces with variable exponent. J. Funct Spaces and Appl., 2003, 1: 45-59

[14]

Liu W. B., Barrett J. W.. Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM, J. Numer. Anal., 1996, 33(1): 88-106

[15]

Mossino J., Temam R.. Directional derivate of the increasing rearrangement mapping and application to a queer differential esuation in plasma physics. Duke Math. J., 1981, 48: 475-495

[16]

Nekvinda A.. Hardy-Littlewood maximal operator on L p(x)(ℝn). Math. Inequal. Appl., 2004, 7(2): 255-265

[17]

Rakotoson J. M.. General Pointwise Relations for the Relative Rearrangement and Applications. Appl. Anal., 2001, 80: 201-232

[18]

Rakotoson J. M.. Relative rearrangement and interpolation inequalities. RACSAM, 2003, 97(1): 133-145

[19]

Rakotoson J. M.. Réarrangement Relatif: Un Instrument D’estimations Dans Les Problèmes Aux Limites, 2008, Berlin: Springer-Verlag

[20]

Rakotoson, J. M., Pointwise estimates for problems associated to non invariant rearrangement norms, in preparation.

[21]

Rakotoson J. M., Temam R.. Une formule intégrale du type Federer et applications. Comptes Rendus Acad. Sci., 1987, 304: 443-446

[22]

Rakotoson J. M., Temam R.. A co-area formula with applications to monotone rearrangement and to regularity. Arch. Rational Mech. Anal., 1990, 109: 213-238

[23]

Rakotoson J. M., Seoane M. L.. Numerical approximations of the relative rearrangement. The piecewice linear case: application to some non local problems. M2An, 2000, 34(2): 477-499

[24]

Rakotoson J. M., Simon B.. Relative rearrangement on measure space application to regularity of weighted monotone rearrangement, Part I. Applied Maths Letters., 1993, 6(1): 75-78

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/