On Korn’s inequality

Philippe G. Ciarlet

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 607 -618.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 607 -618. DOI: 10.1007/s11401-010-0606-3
Article

On Korn’s inequality

Author information +
History +
PDF

Abstract

The author first reviews the classical Korn inequality and its proof. Following recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn inequality can be recovered by an entirely different proof. This new proof hinges on appropriate weak versions of the classical Poincaré and Saint-Venant lemma. In fine, both proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of this paper.

Keywords

Korn inequality / J. L. Lions lemma

Cite this article

Download citation ▾
Philippe G. Ciarlet. On Korn’s inequality. Chinese Annals of Mathematics, Series B, 2010, 31(5): 607-618 DOI:10.1007/s11401-010-0606-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amrouche C., Ciarlet P. G., Gratie L., Kesavan S.. On the characterizations of matrix fields as linearized strain tensor fields. J. Math. Pures Appl., 2006, 86: 116-132

[2]

Amrouche C., Girault V.. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J., 1994, 44: 109-140

[3]

Borchers W., Sohr H.. On the equations rot v = g and div u = f with zero boundary, conditions. Hokkaido Math. J., 1990, 19: 67-87

[4]

Ciarlet P. G., Ciarlet P. J.. Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci., 2005, 15: 259-271

[5]

Duvaut G., Lions J. L.. Les Inéquations en Mécanique et en Physique, 1972, Paris: Dunod

[6]

Flanders H.. Differential Forms with Applications to the Physical Sciences, 1989, New York: Dover

[7]

Friedrichs K. O.. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. of Math., 1947, 48(2): 441-471

[8]

Geymonat G., Gilardi G.. Contre-exemple à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers, Equations aux Dérivées Partielles et Applications, 1998, Paris: Articles Dédiés à Jacques-Louis Lions, Gauthier-Villars 541-548

[9]

Geymonat G., Suquet P.. Functional spaces for Norton-Hoff materials. Math. Models Methods Appl. Sci., 1986, 8: 206-222

[10]

Girault V., Raviart P. A.. Finite Element Methods for Navier-Stokes Equations, 1986, Heidelberg: Springer-Verlag

[11]

Gobert J.. Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. Roy. Sci. Liège, 1962, 31: 182-191

[12]

Horgan C. O.. Korn’s inequalities and their applications in continuum mechanics. SIAM Review, 1995, 37: 491-511

[13]

Kesavan S.. On Poincaré’s and J. L. Lions’ lemmas. C. R. Math. Acad. Sci. Paris, Série I, 2005, 340: 27-30

[14]

Korn A.. Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche. Sitzungsberichte der Mathematisch-physikalischen Klasse der Königlich bayerischen Akademie der Wissenschaften zu München, 1906, 36: 351-402

[15]

Korn A.. Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 1908, 10: 165-269

[16]

Korn A.. Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bulletin International de l’Académie des Sciences de Cracovie, 1909, 9: 705-724

[17]

Lions J. L.. Equations Différentielles Opérationnelles et Problèmes aux Limites, 1961, Berlin: Springer-Verlag

[18]

Lions J. L.. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, 1969, Paris: Dunod

[19]

Lions J. L.. Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, 1973, Berlin: Springer-Verlag

[20]

Magenes E., Stampacchia G.. I problemi al contorno per le equazioni differenziali di tipo ellitico. Ann. Scuola Norm. Sup. Pisa, 1958, 12: 247-358

[21]

Mardare S.. On Poincaré and De Rham’s theorems. Rev. Roumaine Math. Pures Appl., 2008, 53: 523-541

[22]

Nečas J.. Equations aux Dérivées Partielles, 1965, Montréal: Presses de l’Université de Montréal

[23]

Tartar L.. Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay, No. 78.13, 1978, Orsay: Université de Paris-Sud

[24]

Yosida K.. Functional Analysis, Classics in Mathematics, 1995, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/