Regular global attractors of type III thermoelastic extensible beams

Michele Coti Zelati , Vittorino Pata , Ramon Quintanilla

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 619 -630.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 619 -630. DOI: 10.1007/s11401-010-0605-4
Article

Regular global attractors of type III thermoelastic extensible beams

Author information +
History +
PDF

Abstract

For β ∈ ℝ, the authors consider the evolution system in the unknown variables u and α$\left\{ \begin{gathered} \partial _{tt} u + \partial _{xxxx} u + \partial _{xxt} \alpha - \left( {\beta + \left\| {\partial _x u} \right\|_{L^2 }^2 } \right)\partial _{xx} u = f, \hfill \\ \partial _{tt} \alpha - \partial _{xx} \alpha - \partial _{xxt} \alpha - \partial _{xxt} u = 0 \hfill \\ \end{gathered} \right.$ describing the dynamics of type III thermoelastic extensible beams, where the dissipation is entirely contributed by the second equation ruling the evolution of the thermal displacement α. Under natural boundary conditions, the existence of the global attractor of optimal regularity for the related dynamical system acting on the phase space of weak energy solutions is established.

Keywords

Type III thermoelastic extensible beam / Lyapunov functional / Global attractor

Cite this article

Download citation ▾
Michele Coti Zelati, Vittorino Pata, Ramon Quintanilla. Regular global attractors of type III thermoelastic extensible beams. Chinese Annals of Mathematics, Series B, 2010, 31(5): 619-630 DOI:10.1007/s11401-010-0605-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ball J. M.. Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl., 1973, 42: 61-90

[2]

Bucci F., Chueshov I.. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete Cont. Dyn. Systems, 2008, 22: 557-586

[3]

Chueshov I., Lasiecka I.. Attractors and long time behavior of von Karman thermoelastic plates. Appl. Math. Optim., 2008, 58: 195-241

[4]

Coti Zelati M., Giorgi C., Pata V.. Steady states of the hinged extensible beam with external load. Math. Models Methods Appl. Sci., 2010, 20: 43-58

[5]

Dickey R. W.. Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl., 1970, 29: 443-454

[6]

Eden A., Milani A. J.. Exponential attractors for extensible beam equations. Nonlinearity, 1993, 6: 457-479

[7]

Fichera G.. Is the Fourier theory of heat propagation paradoxical?. Rend. Circ. Mat. Palermo, 1992, 41: 5-28

[8]

Giorgi C., Naso M. G., Pata V., Potomkin M.. Global attractors for the extensible thermoelastic beam system. J. Diff. Eqs., 2009, 246: 3496-3517

[9]

Giorgi C., Pata V., Vuk E.. On the extensible viscoelastic beam. Nonlinearity, 2008, 21: 713-733

[10]

Green A. E., Naghdi P. M.. On undamped heat waves in an elastic solid. J. Thermal Stresses, 1992, 15: 253-264

[11]

Green A. E., Naghdi P. M.. Thermoelasticity without energy dissipation. J. Elasticity, 1993, 31: 189-208

[12]

Green A. E., Naghdi P. M.. A unified procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua. Proc. Roy. Soc. London, 1995, 448A: 335-356

[13]

Hale J. K.. Asymptotic behavior of dissipative systems, 1988, Providence, RI: A. M. S.

[14]

Lagnese J. E., Leugering G., Schmidt E. J. P. G.. Modelling of dynamic networks of thin thermoelastic beams. Math. Methods Appl. Sci., 1993, 16: 327-358

[15]

Lazzari B., Nibbi R.. On the exponential decay in thermoelasticity without energy dissipation and of type III in presence of an absorbing boundary. J. Math. Anal. Appl., 2008, 338: 317-329

[16]

Liu Z., Quintanilla R.. Analyticity of solutions in type III thermoelastic plates. IMA J. Appl. Math., 2010, 75: 356-365

[17]

Messaoudi S. A., Said-Houari B.. Energy decay in a Timoshenko-type system of thermoelasticity of type III. J. Math. Anal. Appl., 2008, 348: 298-307

[18]

Messaoudi S. A., Soufyane A.. Boundary stabilization of memory type in thermoelasticity of type III. Appl. Anal., 2008, 87: 13-28

[19]

Puri P., Jordan P. M.. On the propagation of plane waves in type-III thermoelastic media. Proc. Roy. Soc. London, 2004, 460A: 3203-3221

[20]

Quintanilla R.. Damping of end effects in a thermoelastic theory. Appl. Math. Letters, 2001, 14: 137-141

[21]

Quintanilla R.. On the impossibility of localization in linear thermoelasticity. Proc. Roy. Soc. London, 2007, 463A: 3311-3322

[22]

Quintanilla R., Racke R.. Stability in thermoelasticity of type III. Discrete Cont. Dyn. Systems Ser., 2003, 3B: 383-400

[23]

Quintanilla R., Straughan B.. Growth and uniqueness in thermoelasticity. Proc. Roy. Soc. London, 2000, 456A: 1419-1429

[24]

Quintanilla R., Straughan B.. A note on discontinuity waves in type III thermoelasticity. Proc. Roy. Soc. London, 2004, 460A: 1169-1175

[25]

Reiss E. L., Matkowsky B. J.. Nonlinear dynamic buckling of a compressed elastic column. Quart. Appl. Math., 1971, 29: 245-260

[26]

Reissig M., Wang Y. G.. Cauchy problems for linear thermoelastic systems of type III in one space variable. Math. Methods Appl. Sci., 2005, 28: 1359-1381

[27]

Temam R.. Infinite-dimensional Dynamical Systems in Mechanics and Physics, 1997, New York: Springer-Verlag

[28]

Woinowsky-Krieger S.. The effect of an axial force on the vibration of hinged bars. J. Appl. Mech., 1950, 17: 35-36

[29]

Yang L., Wang Y. G.. Well-posedness and decay estimates for Cauchy problems of linear thermoelastic systems of type III in 3-D. Indiana Univ. Math. J., 2006, 55: 1333-1361

[30]

Zhang X., Zuazua E.. Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math., 2003, 5: 25-83

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/