Numerical approximation of a reaction-diffusion system with fast reversible reaction

Robert Eymard , Danielle Hilhorst , Hideki Murakawa , Michal Olech

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 631 -654.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 631 -654. DOI: 10.1007/s11401-010-0604-5
Article

Numerical approximation of a reaction-diffusion system with fast reversible reaction

Author information +
History +
PDF

Abstract

The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate. It follows that the solution converges to the solution of a nonlinear diffusion problem, as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.

Keywords

Instantaneous reaction limit / Mass-action kinetics / Finite volume methods / Convergence of approximate solutions / Discrete a priori estimates / Kolmogorov’s theorem

Cite this article

Download citation ▾
Robert Eymard, Danielle Hilhorst, Hideki Murakawa, Michal Olech. Numerical approximation of a reaction-diffusion system with fast reversible reaction. Chinese Annals of Mathematics, Series B, 2010, 31(5): 631-654 DOI:10.1007/s11401-010-0604-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bothe D., Hilhorst D.. A reaction-diffusion system with fast reversible reaction. J. Math. Anal. Appl., 2003, 268(1): 125-135

[2]

Brezis H.. Analyse Fonctionnelle, Collection Mathematiques Appliquées pour la Maîtrise, 1983, Paris: Masson

[3]

Chipot M., Hilhorst D., Kinderlehrer D., Olech M.. Contraction in L 1 for a system arising in chemical reactions and molecular motors. Differ. Equ. Appl., 2009, 1(1): 139-151

[4]

Deimling K.. Nonlinear Functional Analysis, 1985, Berlin: Springer-Verlag

[5]

Espenson J. H.. Chemical Kinetics and Reaction Mechanisms, 1995, New York: Mc Graw-Hill

[6]

Eymard R., Gallouët T., Herbin R.. Finite Volume Methods, Handbook of Numerical Analysis, VII, 2000, Amsterdam: North-Holland

[7]

Eymard R., Gallouët T., Hilhorst D., Natï Slimane Y.. Slimane finite volumes and nonlinear diffusion equations. RAIRO Model. Math. Anal. Numer., 1998, 32(6): 747-761

[8]

Eymard R., Gutnic M., Hilhorst D.. The finite volume method for Richards equation. Comput. Geosci., 2000, 3(3–4): 259-294

[9]

Érdi P., Tóth J.. Mathematical models of chemical reactions, Nonlinear Science: Theory and Applications, 1989, Princeton, NJ: Princeton University Press

[10]

Folland G. B.. Real Analysis, Modern Techniques and Their Applications, Pure and Applied Mathematics, 1984, New York: John Wiley & Sons Inc.

[11]

Ladyženskaja O. A., Solonnikov V. A., Ural’ceva N. N.. Linear and Quasilinear Equations of Parabolic Type, 1967, Providence, RI: American Mathematical Society

[12]

Meyer H., Klein J., Weiss A.. Kinetiche untersuchung reversiblen dimerisierung von o-phenylenedioxydimethylsilan. J. Organometallic Chem., 1979, 117: 323-328

[13]

Murakawa H.. Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity, 2007, 20: 2319-2332

[14]

Nikolsky S. M.. Volosov V. M.. A course of mathematical analysis, 1977, Moscow: Mir Publishers

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/