Trajectory attractors for binary fluid mixtures in 3D

Ciprian G. Gal , Maurizio Grasselli

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 655 -678.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 655 -678. DOI: 10.1007/s11401-010-0603-6
Article

Trajectory attractors for binary fluid mixtures in 3D

Author information +
History +
PDF

Abstract

Two different models for the evolution of incompressible binary fluid mixtures in a three-dimensional bounded domain are considered. They consist of the 3D incompressible Navier-Stokes equations, subject to time-dependent external forces and coupled with either a convective Allen-Cahn or Cahn-Hilliard equation. Such systems can be viewed as generalizations of the Navier-Stokes equations to two-phase fluids. Using the trajectory approach, the authors prove the existence of the trajectory attractor for both systems.

Keywords

Navier-Stokes equations / Allen-Cahn equations / Cahn-Hilliard equations / Two-phase fluid flows / Longtime behavior / Trajectory attractors

Cite this article

Download citation ▾
Ciprian G. Gal, Maurizio Grasselli. Trajectory attractors for binary fluid mixtures in 3D. Chinese Annals of Mathematics, Series B, 2010, 31(5): 655-678 DOI:10.1007/s11401-010-0603-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abels H.. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal., 2009, 194: 463-506

[2]

Abels H.. Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system, Nonlocal and Abstract Parabolic Equations and Their Applications, 2009, Warsaw: Polish Acad. Sci. Inst. Math. 9-19

[3]

Abels H., Feireisl E.. On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J., 2008, 57: 659-698

[4]

Abels H., Röger M.. Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, 26: 2403-2424

[5]

Anderson D. M., McFadden G. B., Wheeler A. A.. Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics. Annu. Rev. Fluid Mech., 1998, 30: 139-165

[6]

Badalassi V. E., Ceniceros H. D., Banerjee S.. Computation of multiphase systems with phase field models. J. Comput. Phys., 2003, 190: 371-397

[7]

Ball J. M.. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci., 1997, 7: 475-502

[8]

Berti S., Boffetta G., Cencini M., Vulpiani A.. Turbulence and coarsening in active and passive binary mixtures. Phys. Rev. Lett., 2005, 95: 224501

[9]

Blesgen T.. A generalization of the Navier-Stokes equation to two-phase flows. J. Physics D (Applied Physics), 1999, 32: 1119-1123

[10]

Boyer F.. Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptotic Anal, 1999, 20: 175-212

[11]

Boyer F.. Nonhomogeneous Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2001, 18: 225-259

[12]

Boyer F.. A theoretical and numerical model for the study of incompressible mixture flows. Computer and Fluids, 2002, 31: 41-68

[13]

Boyer F., Fabrie P.. Persistency of 2D perturbations of one-dimensional solutions for a Cahn-Hilliard flow model under high shear. Asymptotic Anal., 2003, 33: 107-151

[14]

Bray A. J.. Theory of phase-ordering kinetics. Adv. Phys., 2002, 51: 481-587

[15]

Cahn J. W., Hilliard J. H.. Free energy of a nonuniform system, I, Interfacial free energy. J. Chem. Phys., 1958, 28: 258-267

[16]

Caraballo T., Marín-Rubio P., Robinson J. C.. A comparison between two theories for multi-valued semiflows and their asymptotic behavior. Set Valued Anal., 2003, 11: 297-322

[17]

Chella R., Viñals J.. Mixing of a two-phase fluid by a cavity flow. Phys. Rev. E, 1996, 53: 3832-3840

[18]

Chepyzhov V. V., Vishik M. I.. Evolution equations and their trajectory attractors. J. Math. Pures Appl., 1997, 76(9): 913-964

[19]

Chepyzhov V. V., Vishik M. I.. Attractors for Equations of Mathematical Physics, 2002, Providence, RI: A. M. S.

[20]

Cheskidov A., Foias C.. On global attractors of the 3D Navier-Stokes equations. J. Diff. Eqs., 2006, 231: 714-754

[21]

Chupin L.. Existence result for a mixture of non newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete Contin. Dyn. Syst. Ser. B, 2003, 3: 45-68

[22]

Climent-Ezquerra B., Guillén-González F., Rojas-Medar M.. Reproductivity for a nematic liquid crystal model. Z. Angew. Math. Phys., 2006, 57: 984-998

[23]

Climent-Ezquerra B., Guillén-González F., Moreno-Iraberte M. J.. Regularity and time-periodicity for a nematic liquid crystal model. Nonlinear Anal., 2009, 71: 539-549

[24]

Cutland N. J.. Global attractors for small samples and germs of 3D Navier-Stokes equations. Nonlinear Anal., 2005, 62: 265-281

[25]

Du Q., Liu C., Ryham R., Wang X.. A phase field formulation of the Willmore problem. Nonlinearity, 2005, 18: 1249-1267

[26]

Du Q., Li M., Liu C.. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete Contin. Dyn. Syst. Ser. B, 2007, 8: 539-556

[27]

Fabrie P., Miranville A.. Exponential attractors for nonautonomous first-order evolution equations. Discrete Contin. Dynam. Systems, 1998, 4: 225-240

[28]

Feireisl, E., Petzeltová, H., Rocca, E. et al., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., preprint. DOI: 10.1142/S0218202510004544

[29]

Feng X., He Y., Liu C.. Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comp., 2007, 76: 539-571

[30]

Flandoli F., Schmalfuss B.. Weak solutions and attractors for the 3-dimensional Navier-Stokes equations with nonregular force. J. Dynam. Differential Equations, 1999, 11: 355-398

[31]

Gal C. G., Grasselli M.. Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27: 401-436

[32]

Gal C. G., Grasselli M.. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete Contin. Dyn. Syst., 2010, 28: 1-39

[33]

Gurtin M. E., Polignone D., Viñals J.. Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci., 1996, 6: 8-15

[34]

Hohenberg P. C., Halperin B. I.. Theory of dynamical critical phenomena. Rev. Mod. Phys., 1977, 49: 435-479

[35]

Hu X., Wang D.. Global solution to the three-dimensional incompressible flow of liquid crystals. Comm. Math. Phys., 2010, 296: 861-880

[36]

Jacqmin D.. Calculation of two-phase Navier-Stokes flows using phase-field modelling. J. Comp. Phys., 1999, 155: 96-127

[37]

Jasnow D., Viñals J.. Coarse-grained description of thermo-capillary flow. Phys. Fluids, 1996, 8: 660-669

[38]

Kapustyan A. V., Valero J.. Weak and strong attractors for the 3D Navier-Stokes system. J. Diff. Eqs., 2007, 240: 249-278

[39]

Kay D., Styles V., Welford R.. Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound., 2008, 10: 15-43

[40]

Kim N., Consiglieri L., Rodrigues J. F.. On non-Newtonian incompressible fluids with phase transitions. Math. Meth. Appl. Sci., 2006, 29: 1523-1541

[41]

Kim J., Kang K., Lowengrub J.. Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys., 2004, 193: 511-543

[42]

Lamorgese A. G., Mauri R.. Diffuse-interface modeling of phase segregation in liquid mixtures. International J. Multiphase Flow, 2008, 3: 987-995

[43]

Lin F. H.. Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Comm. Pure Appl. Math., 1989, 42: 789-814

[44]

Lin F. H., Liu C.. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math., 1995, 48: 501-537

[45]

Lions J. L.. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, 1969, Paris: Dunod, Gauthier-Villars

[46]

Liu C., Shen J.. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D, 2003, 179: 211-228

[47]

Liu C., Walkington N. J.. Approximation of liquid crystal flows. SIAM J. Num. Anal., 2000, 37: 725-741

[48]

Lowengrub J., Truskinovsky L.. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 1998, 454: 2617-2654

[49]

Lu S.. Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces. J. Diff. Eqs., 2006, 230: 196-212

[50]

Lu S., Wu H., Zhong C.. Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces. Discrete Contin. Dyn. Syst., 2005, 13: 701-719

[51]

Melnik V.. Multivalues semiflows and their attractors (in Russian). Dokl. Akad. Nauk., 1995, 343: 302-305

[52]

Melnik V., Valero J.. On attractors of multi-valued semi-flows and differential inclusions. Set Valued Anal., 1998, 6: 83-111

[53]

Morro A.. Phase-field models for fluid mixtures. Math. Comput. Modelling, 2007, 45: 1042-1052

[54]

Onuki A.. Phase transitions of fluids in shear flow. J. Physics: Cond. Matter, 1997, 9: 6119-6157

[55]

Robinson J. C.. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, 2001, Cambridge: Cambridge Texts in Applied Mathematics

[56]

Rosa R. M. S.. Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations. J. Diff. Eqs., 2006, 229: 257-269

[57]

Ruiz R., Nelson D. R.. Turbulence in binary fluid mixtures. Phys. Rev. A, 1981, 23: 3224-3246

[58]

Sell G. R.. Global attractors for the three-dimensional Navier-Stokes equations. J. Dynam. Diff. Eqs., 1996, 8: 1-33

[59]

Sell G. R., You Y.. Dynamics of Evolutionary Equations. Appl. Math. Sci., 2002, New York: Springer-Verlag

[60]

Shkoller S.. Well-posedness and global attractors for liquid crystals on Riemannian manifolds. Comm. Part. Diff. Eqs., 2002, 27: 1103-1137

[61]

Siggia E. D.. Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A, 1979, 20: 595-605

[62]

Starovoitov V. N.. The dynamics of a two-component fluid in the presence of capillary forces. Math. Notes, 1997, 62: 244-254

[63]

Tan Z., Lim K. M., Khoo B. C.. An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model. J. Comp. Phys., 2007, 225: 1137-1158

[64]

Temam R.. Infinite-dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci., 1988, New York: Springer-Verlag

[65]

Temam R.. Navier-Stokes Equations, 2001, Providence, RI: Theory and Numerical Analysis, A. M. S.

[66]

Wu H.. Long-time behavior for nonlinear hydrodynamic systems modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst., 2010, 26: 379-396

[67]

Yang X., Feng J. J., Liu C., Shen J.. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comp. Phys., 2006, 218: 417-428

[68]

Zhao L., Wu H., Huang H.. Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids. Commun. Math. Sci., 2009, 7: 939-962

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/