Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions

Gianni Gilardi , Alain Miranville , Giulio Schimperna

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 679 -712.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 679 -712. DOI: 10.1007/s11401-010-0602-7
Article

Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions

Author information +
History +
PDF

Abstract

The Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions is considered. The existence of the global attractor is proved and the long time behavior of the trajectories, namely, the convergence to steady states, is studied.

Keywords

Cahn-Hilliard equation / Dynamic boundary conditions / Irregular potentials / Global attractor / ω-limit sets / Convergence to steady states

Cite this article

Download citation ▾
Gianni Gilardi, Alain Miranville, Giulio Schimperna. Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Chinese Annals of Mathematics, Series B, 2010, 31(5): 679-712 DOI:10.1007/s11401-010-0602-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Babin A. V., Vishik M. I.. Attractors of Evolution Equations, 1992, Amsterdam: North-Holland

[2]

Brézis H.. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1973, Amsterdam: North-Holland

[3]

Brezzi F., Gilardi G.. Kardestuncer H.. FEM Mathematics, Finite Element Handbook. Part I: Chapt. 1: Functional Analysis, 1.1–1.5; Chapt. 2: Functional Spaces, 2.1–2.11; Chapt. 3: Partial Differential Equations, 3.1–3.6, 1987, New York: McGraw-Hill Book Co.

[4]

Cherfils L., Gatti S., Miranville A.. Corrigendum to “Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials. J. Math. Anal. Appl., 2008, 348: 1029-1030

[5]

Cherfils L., Miranville A.. On the Caginalp system with dynamic boundary conditions and singular potentials. Appl. Math., 2009, 54: 89-115

[6]

Chill R., Fašangová E., Prüss J.. Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions. Math. Nachr., 2006, 279: 1448-1462

[7]

Fischer H. P., Maass P., Dieterich W.. Novel surface modes in spinodal decomposition. Phys. Rev. Letters, 1997, 79: 893-896

[8]

Fischer H. P., Maass P., Dieterich W.. Diverging time and length scales of spinodal decomposition modes in thin flows. Europhys. Letters, 1998, 42: 49-54

[9]

Fischer H. P., Reinhard J., Dieterich W. Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall. J. Chem. Phys., 1998, 108: 3028-3037

[10]

Gal C. G.. A Cahn-Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci., 2006, 29: 2009-2036

[11]

Gal C. G.. Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls (electronic). Electron. J. Diff. Eqs., 2006, 143: 1-23

[12]

Gal C. G., Grasselli M.. The nonisothermal Allen-Cahn equation with dynamic boundary conditions. Discrete Contin. Dyn. Systems A, 2008, 22: 1009-1040

[13]

Gal C. G., Grasselli M.. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Commun. Pure Appl. Anal., 2009, 8: 689-710

[14]

Gal C. G., Grasselli M., Miranville A.. Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions. Nonlinear Phenomena with Energy Dissipation: Mathematical Analysis, Modeling and Simulation, 2008, Tokyo: Gakkōtosho 117-139

[15]

Gatti S., Miranville A.. Asymptotic behavior of a phase-field system with dynamic boundary conditions. Differential Equations: Inverse and Direct Problems, 2006, Boca Raton, FL: Chapman & Hall 149-170

[16]

Geymonat G.. Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions. Ann. Math. Blaise Pascal, 2007, 14: 187-197

[17]

Gilardi G.. On a conserved phase field model with irregular potentials and dynamic boundary conditions. Istit. Lombardo Accad. Sci. Lett. Rend. A, 2007, 141: 129-162

[18]

Gilardi G., Miranville A., Schimperna G.. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal., 2009, 8: 881-912

[19]

Grasselli M., Miranville A., Schimperna G.. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete Contin. Dyn. Syst., 2010, 28: 67-98

[20]

Haraux A.. Systèmes Dynamiques Dissipatifs et Applications, 1991, Paris: Masson

[21]

Lions J.-L., Magenes E.. Problèmes aux Limites non Homog`enes et Applications, Vol. I, 1968, Paris: Dunod

[22]

Miranville A., Zelik S.. Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci., 2004, 27: 545-582

[23]

Miranville A., Zelik S.. Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci., 2005, 28: 709-735

[24]

Miranville A., Zelik S.. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Contin. Dyn. Syst., 2010, 28: 275-310

[25]

Pata V., Zelik S.. A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal., 2007, 6: 481-486

[26]

Prüss J., Racke R., Zheng S.. Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl., 2006, 185(4): 627-648

[27]

Racke R., Zheng S.. The Cahn-Hilliard equation with dynamic boundary conditions. Adv. Diff. Eqs., 2003, 8: 83-110

[28]

Schimperna G.. Abstract approach to evolution equations of phase field type and applications. J. Diff. Eqs., 2000, 164: 395-430

[29]

Temam R.. Infinite-dimensional Dynamical Systems in Mechanics and Physics, 1988, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/