Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems

Tatsien Li , Bopeng Rao

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 723 -742.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 723 -742. DOI: 10.1007/s11401-010-0600-9
Article

Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems

Author information +
History +
PDF

Abstract

In this paper, the authors define the strong (weak) exact boundary controllability and the strong (weak) exact boundary observability for first order quasilinear hyperbolic systems, and study their properties and the relationship between them.

Keywords

Strong (weak) exact boundary controllability / Strong (weak) exact boundary observability / First order quasilinear hyperbolic system

Cite this article

Download citation ▾
Tatsien Li, Bopeng Rao. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chinese Annals of Mathematics, Series B, 2010, 31(5): 723-742 DOI:10.1007/s11401-010-0600-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Russell D. L.. Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev., 1978, 20: 639-739

[2]

Lions J.-L.. Contrôlabilité Exacte, Perturbations et Stabilisation de Syst`emes Distribués, Vol. I, 1988, Paris: Masson

[3]

Li T. T.. Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, Vol. 3, 2010, Springfield, Beijing: American Institute of Mathematical Sciences & Higher Education Press

[4]

Li T. T., Yu W. C.. Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics, Series V, 1985, Durham: Duke University Press

[5]

Li T. T., Jin Y.. Semi-global C 1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math., 2001, 22B(3): 325-336

[6]

Cirinà M.. Boundary controllability of nonlinear hyperbolic systems. SIAM J. Control Optim., 1969, 7: 198-212

[7]

Li T. T., Rao B. P., Jin Y.. Solution C 1 semi-globale et contrôlabilité exacte fronti`ere de syst`emes hyperboliques quasi linéaires. C. R. Math. Acad. Sci. Paris Ser. I, 2001, 333: 219-224

[8]

Li T. T., Rao B. P.. Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control Optim., 2003, 41: 1748-1755

[9]

Li T. T., Rao B. P.. Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math., 2002, 23B: 209-218

[10]

Zhang Q.. Exact boundary controllability with less controls acting on two ends for quasilinear hyperbolic systems (in Chinese). Appl. Math. J. Chinese Univ. Ser. A, 2009, 24: 65-74

[11]

Li T. T.. Observabilité exacte fronti`ere pour des syst`emes hyperboliques quasi-linéaires. C. R. Math. Acad. Sci. Paris Ser. I, 2006, 342: 937-942

[12]

Li T. T.. Exact boundary observability for quasilinear hyperbolic systems. ESAIM: Control Optim. Calc. Var., 2008, 14: 759-766

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/