Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows

Jie Shen , Xiaofeng Yang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 743 -758.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 743 -758. DOI: 10.1007/s11401-010-0599-y
Article

Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows

Author information +
History +
PDF

Abstract

Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogous to the continuous energy laws.

Keywords

Phase-field / Two-phase flow / Navier-Stokes / Cahn-Hilliard / Energy stable

Cite this article

Download citation ▾
Jie Shen, Xiaofeng Yang. Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chinese Annals of Mathematics, Series B, 2010, 31(5): 743-758 DOI:10.1007/s11401-010-0599-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen S. M., Cahn J. W.. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater., 1979, 27: 1085-1095

[2]

Anderson D. M., McFadden G. B., Wheeler A. A.. Diffuse-interface methods in fluid mechanics, 1998, 30: 139-165

[3]

Becker R., Feng X., Prohl A.. Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal., 2008, 46(4): 1704-1731

[4]

Caffarelli L. A., Muler N. E.. An L bound for solutions of the Cahn-Hilliard equation. Arch. Rational Mech. Anal., 1995, 133(2): 129-144

[5]

Cahn J. W., Hilliard J. E.. Free energy of a nonuniform system, I: Interfacial free energy. J. Chem. Phys., 1958, 28: 258-267

[6]

Condette, N., Melcher, C. and Süli, E., Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth, Math. Comp., to appear.

[7]

Feng X., He Y., Liu C.. Analysis of finite element approximations of a phase field model for two-phase fluids (electronic). Math. Comp., 2007, 76(258): 539-571

[8]

Guermond J. L., Minev P., Shen J.. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg., 2006, 195: 6011-6045

[9]

Guermond J. L., Quartapelle L.. A projection FEM for variable density incompressible flows. J. Comput. Phys., 2000, 165(1): 167-188

[10]

Guermond J. L., Salgado A.. A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys., 2009, 228(8): 2834-2846

[11]

Gurtin M. E., Polignone D., Vinals J.. Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci., 1996, 6(6): 815-831

[12]

Jacqmin D.. Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys., 2007, 155(1): 96-127

[13]

Kessler D., Nochetto R. H., Schmidt A.. A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality. M2AN Math. Model. Numer. Anal., 2004, 38(1): 129-142

[14]

Lin P., Liu C., Zhang H.. An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys., 2007, 227(2): 1411-1427

[15]

Liu C., Shen J.. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D, 2003, 179(3–4): 211-228

[16]

Lowengrub J., Truskinovsky L.. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 1998, 454(1978): 2617-2654

[17]

Nochetto R., Pyo J. H.. The gauge-Uzawa finite element method part I: the Navier-Stokes equations. SIAM J. Numer. Anal., 2005, 43: 1043-1068

[18]

Prohl A.. Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, 1997, Stuttgart: Advances in Numerical Mathematics, BG Teubner

[19]

Pyo J., Shen J.. Gauge-uzawa methods for incompressible flows with variable density. J. Comput. Phys., 2007, 221: 181-197

[20]

Rannacher R.. On Chorin’s projection method for the incompressible Navier-Stokes equations, 1991, Berlin: Springer-Verlag

[21]

Shen J.. Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput., 1994, 15: 1489-1505

[22]

Shen J.. On error estimates of projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp, 1996, 65: 1039-1065

[23]

Shen J., Yang X.. A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput., 2010, 32: 1159-1179

[24]

Shen J., Yang X.. Numerical approximations of allen-cahn and cahn-hilliard equations. Discrete and Continuous Dynamical Systems, Series A, 2010, 28: 1669-1691

[25]

Walkington N. J.. Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal., 2010, 47(6): 4680-4710

[26]

Yue P., Feng J. J., Liu C. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech, 2004, 515: 293-317

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/