Examples of boundary layers associated with the incompressible Navier-Stokes equations

Xiaoming Wang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 781 -792.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (5) : 781 -792. DOI: 10.1007/s11401-010-0597-0
Article

Examples of boundary layers associated with the incompressible Navier-Stokes equations

Author information +
History +
PDF

Abstract

The author surveys a few examples of boundary layers for which the Prandtl boundary layer theory can be rigorously validated. All of them are associated with the incompressible Navier-Stokes equations for Newtonian fluids equipped with various Dirichlet boundary conditions (specified velocity). These examples include a family of (nonlinear 3D) plane parallel flows, a family of (nonlinear) parallel pipe flows, as well as flows with uniform injection and suction at the boundary. We also identify a key ingredient in establishing the validity of the Prandtl type theory, i.e., a spectral constraint on the approximate solution to the Navier-Stokes system constructed by combining the inviscid solution and the solution to the Prandtl type system. This is an additional difficulty besides the wellknown issue related to the well-posedness of the Prandtl type system. It seems that the main obstruction to the verification of the spectral constraint condition is the possible separation of boundary layers. A common theme of these examples is the inhibition of separation of boundary layers either via suppressing the velocity normal to the boundary or by injection and suction at the boundary so that the spectral constraint can be verified. A meta theorem is then presented which covers all the cases considered here.

Keywords

Boundary layer / Navier-Stokes system / Prandtl theory / Corrector / Inviscid limit / Spectral constraint / Nonlinear plane parallel channel flow / Nonlinear pipe flow / Injection and suction

Cite this article

Download citation ▾
Xiaoming Wang. Examples of boundary layers associated with the incompressible Navier-Stokes equations. Chinese Annals of Mathematics, Series B, 2010, 31(5): 781-792 DOI:10.1007/s11401-010-0597-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alekseenko S. N.. Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls. Siberian Math. J., 1994, 35(2): 209-230

[2]

Antontsev S. N., Kazhikhov A. V., Monakhov V. N.. Boundary Value Problems in Mechanics of Non-homogeneous Fluids, 1990, Amsterdam: North-Holland

[3]

Asano, K., Zero viscosity limit of incompressible Navier-Stokes equations 1, 2, Preprint, Kyoto University, 1989.

[4]

Cheng W., Temam R., Wang X.. New Algorithms for a Class of PDE Displaying Boundary Layer Behavior. Meth. and Appl. Anal., 2000, 7(2): 363-390

[5]

Doering C. R., Gibbon J. D.. Applied analysis of the Navier-Stokes equations Cambridge, 1995, New York: Cambridge University Press

[6]

Drazin P. G., Reid W. H.. Hydrodynamic Stability, 1982, Cambridge: Cambridge University Press

[7]

E W.. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.), 2000, 16(2): 207-218

[8]

E W., Engquist B.. Blow-up of solutions of the unsteady Prandtl’s equations. Comm. Pure Appl. Math., 1998, 50(12): 1287-1293

[9]

Fife P. C.. Considerations regarding the mathematical basis for Prandtl’s boundary layer theory. Archive for Rat. Mech. and Anal., 1968, 28(3): 184-216

[10]

Friedrichs, K. O., The mathematical structure of the boundary layer problem, Fluid Dynamics, R. von Mises and K. O. Friedrichs (eds.), Brown University, Providence, RI, 171–174; reprinted by Springer-Verlag, New York, 1971.

[11]

Gérard-Varet D., Dormy E.. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc., 2010, 23: 591-609

[12]

Grenier E.. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math., 2000, 53(9): 1067-1091

[13]

Hamouda M., Temam R. M.. Chuong N. M.. Some singular perturbation problems related to the Navier-Stokes equations. Advanced in Determistic and Stochastic Analysis, Proceedings, 2006, New York: Springer-Verlag

[14]

Kato T.. Chern S. S.. Remarks on the zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on PDE, 1984, New York: Springer-Verlag

[15]

Lions J. L.. Méthodes de Résolution des Problémes aux Limites Non Linéaires, 1969, Paris: Dunod

[16]

Lions J. L.. Perturbations singulières dans les problèmes aux limites et en controle optimal, 1973, New York: Springer-Verlag

[17]

Masmoudi N.. Dafermos C. M., Feireisl E.. Examples of singular limits in hydrodynamics, Handbook of Differential Equations: Evolutionary Equations, Vol. 3, 2007, Amsterdam: North-Holland

[18]

Mazzucato, A., Niu, D. and Wang, X., Boundary layer associated with a class of 3D nonlinear plane parallel flows, Indiana Univ. Math. J., 2010, submitted.

[19]

Mazzucato, A., Niu, D. and Wang, X., Boundary layer associated with a class of parallel pipe flows, 2010, in preparation.

[20]

Mazzucato A., Taylor M.. Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE, 2008, 1: 35-93

[21]

Mazzucato, A. and Taylor, M., Vanishing Viscosity Limits for a Class of Circular Pipe Flows And Related Singular Perturbation Problems, 2010, preprint.

[22]

Oleinik O. A., Samokhin V. N.. Mathematical models in boundary layer theory, 1999, Boca Raton, Fla.: Chapman and Hall/CRC

[23]

Petcu M.. Euler equations in a 3D channel with nonhomogeneous boundary conditions. Diff. Integral Equations, 2006, 19(3): 297-326

[24]

Prandtl L.. Veber Flüssigkeiten bei sehr kleiner Reibung, Verh. III Intern. Math. Kongr. Heidelberg, 1905, Leibzig: Teuber 484-491

[25]

Sammartino M., Caflisch R. E.. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys., 1998, 192(2): 433-461

[26]

Sammartino M., Caflisch R. E.. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm. Math. Phys., 1998, 192(2): 463-491

[27]

Schlichting H.. Boundary-Layer Theory, 2000, Berlin, New York: Springer-Verlag

[28]

Serrin J.. On the mathematical basis for Prandtl’s boundary layer theory: an example. Arch. Rat. Mech. Anal., 1968, 28(3): 217-225

[29]

Temam R., Wang X.. Asymptotic analysis of Oseen type equations in a channel at small viscosity. Indiana Univ. Math. J., 1996, 45: 863-916

[30]

Temam R., Wang X.. On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1997, 25(3–4): 807-828

[31]

Temam R., Wang X.. Remarks on the Prandtl type equations with permeable wall, Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl. Zeitschrift fur Angewandte Mathematik und Mechanik, 2000, 80(11–12): 835-843

[32]

Temam R., Wang X.. Boundary layer associated with the incompressible Navier-Stokes equations: the non-characteristic boundary case. J. Diff. Eqs., 2002, 179: 647-686

[33]

Vishik M. I., Lyusternik L. A.. Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekki Mat. Nauk, 1957, 12: 3-122

[34]

Wang X.. Asymptotic behavior of the Navier-Stokes equations, 1996, Indiana: Indiana University

[35]

Wang X.. A Kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ. Math. J., 2001, 50: 223-241

[36]

Xie X., Zhang L.. Boundary layer associated with incompressible flows (in Chinese). Chin. Ann. Math., 2009, 30A(3): 309-332

[37]

Xin Z., Zhang L.. On the global existence of solutions to the Prandtl’s system. Advances in Mathematics, 2004, 181(1): 88-133

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/