The Cauchy integral operator on weighted Hardy space

Jianmiao Ruan , Jiecheng Chen

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 461 -472.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 461 -472. DOI: 10.1007/s11401-010-0594-3
Article

The Cauchy integral operator on weighted Hardy space

Author information +
History +
PDF

Abstract

The authors show that the Cauchy integral operator is bounded from H ω p(R 1) to h w p(R 1) (the weighted local Hardy space). To prove the results, a kind of generalized atoms is introduced and a variant of weighted “Tb theorem” is considered.

Keywords

Cauchy integral / Calderón-Zygmund operator / Weighted Hardy space / Weighted local Hardy space

Cite this article

Download citation ▾
Jianmiao Ruan, Jiecheng Chen. The Cauchy integral operator on weighted Hardy space. Chinese Annals of Mathematics, Series B, 2010, 31(4): 461-472 DOI:10.1007/s11401-010-0594-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bownik M., Li B., Yang D., Zhou Y.. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J., 2008, 57: 3065-3100

[2]

Calderón, A. P., Commutators singular integrals on Lipschitz curves and applications, Proc. Inter. Congress of Math. Helsinki, 1978, 85–96.

[3]

Coifman C., McIntosh A., Meyer Y.. L’integrale de Cauchy définit un opérateur borné sur L 2 pour les courbes Lipschitziennes. Ann. of Math., 1982, 116: 361-388

[4]

David G.. Wavelets and Singular Integrals on Curves, 1991, Berlin: Springer-Verlag

[5]

David G., Journé J. L.. A boundedness criterion for generalized Calderón-Zygmund operators. Ann. of Math., 1984, 120: 371-397

[6]

Fefferman C., Stein E. M.. H p spaces of several variables. Acta. Math., 1972, 129: 137-193

[7]

García-Cuerva J., Kazarian K. S.. Weighted Norm Inequalities and Related Topics, 1985, Amsterdam: North Holland

[8]

García-Cuerva J., Rubio de Francia J.. Calderón-Zygmund operators and unconditional bases of weighted hardy spaces. Stud. Math., 1994, 109: 255-276

[9]

Goldberg D.. A local version of real Hardy spaces. Duck Math. J., 1979, 46: 27-42

[10]

Grafakos L.. Classical and Modern Fourier Analysis, 2006, Beijing: China Machine Press

[11]

Journé J. L.. Calderón-Zygmund-Type Operators, Pseudo-differential Operators and the Cauchy Integral of Calderón, 1983, New York: Springer-Verlag

[12]

Komori Y.. Calderón-Zygmund operators on H p(R n). Sci. Math. Japonicae, 2001, 53: 65-73

[13]

Komori Y.. Calderón-Zygmund operator on weighted H p(R n). Hokk. Math. J., 2003, 32: 673-684

[14]

Komori Y.. The Cauchy integral on Hardy space. Hokk. Math. J., 2008, 37: 389-398

[15]

Quek T., Yang D.. Calderón-Zygmund-type operators on weighted weak Hardy spaces over R n. Acta Math. Sinica (Engl. Ser.), 2000, 16: 141-160

[16]

Stein E. M.. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, 1993, Princeton: Princeton University Press

[17]

Strömberg J., Torchinsky A.. Weighted Hardy Spaces, 1989, New York: Springer-Verlag

[18]

Taibleson M. H., Weiss G.. The molecular characterization of certain Hardy spaces. Astérisgne, 1980, 77: 67-149

[19]

Torchinsky A.. Real Variable Method in Harmonic Analysis, 1986, New York: Academic Press

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/