Inverse coefficient problems for elliptic hemivariational inequalities

Cui’e Xiao , Zhenhai Liu

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 473 -480.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 473 -480. DOI: 10.1007/s11401-010-0593-4
Article

Inverse coefficient problems for elliptic hemivariational inequalities

Author information +
History +
PDF

Abstract

This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic hemivariational inequalities. The unknown coefficient of elliptic hemivariational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic hemivariational inequalities are uniquely solvable for the given class of coefficients. The result of existence of quasisolutions of the inverse problems is obtained.

Keywords

Elliptic hemivariational inequality / Inverse coefficient problem / Existence of quasisolution

Cite this article

Download citation ▾
Cui’e Xiao, Zhenhai Liu. Inverse coefficient problems for elliptic hemivariational inequalities. Chinese Annals of Mathematics, Series B, 2010, 31(4): 473-480 DOI:10.1007/s11401-010-0593-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adly S., Goeleven D., Thera M.. Periodic solutions of evolution variational inequalities—a method of guiding functions. Chin. Ann. Math., 2009, 30B(3): 261-272

[2]

Chang K. C.. Critical Point Theory and Its Applications (in Chinese), 1986, Shanghai: Shanghai Press of Science and Technology

[3]

Clarke F. H.. Optimization and Nonsmooth Analysis, 1990, Philadelphia: SIAM

[4]

Hasanov A., Liu Z. H.. An inverse coefficient problem for a nonlinear parabolic variational inequality. Appl. Math. Lett., 2008, 21(6): 563-570

[5]

Kohn R., Vogelius M.. Determining conductivity by boundary measurements. Commun. Pure Appl. Math., 1984, 37: 289-298

[6]

Ladyzhenskaya O. A.. Boundary Value Problems in Mathematical Physics, 1985, New York: Springer-Verlag

[7]

Liu Z. H.. On the identification of coefficients of semilinear parabolic equations. Acta Math. Appl. Sinica, 1994, 10: 356-367

[8]

Liu Z. H.. Identification of parameters in semilinear parabolic equations. Acta Math. Scientia, 1999, 19: 175-180

[9]

Liu Z. H.. On quasilinear elliptic hemivariational inequalities of higher order. Acta Math. Hungar., 1999, 85(1–2): 1-8

[10]

Liu Z. H.. Elliptic variational hemivariational inequalities. Appl. Math. Letters, 2003, 16: 871-876

[11]

Liu Z. H., Liu G. F.. On eigenvalue problems for elliptic hemivariational inequalities. Proc. Edinburgh Math. Society, 2008, 51: 407-419

[12]

Liu Z. H., Wang B. Y.. Coefficient identification in parabolic equations. Appl. Math. Comp., 2009, 209: 379-390

[13]

Liu Z. H., Zou J. Z.. Strong convergence results for hemivariational inequalities. Sci. in China Ser. A, 2006, 49(7): 893-901

[14]

Migorski, S., Identification coefficient problems for elliptic hemivariational inequalities and applications, Proceedings of International Symposium on Inverse Problems in Engineering Mechanics 2000 (ISIP2000), Nagano, Japan, March 7–10, 2000, M. Tanaka and G. S. Dulikravich (eds), Elsevier Science B. V., 2000, 513–520.

[15]

Migorski S., Ochal A.. Inverse coefficient problem for elliptic hemivariational inequality, Non-smooth/Nonconvex Mechanics: Modeling, Analysis and Numerical Methods, 2001, Dordrecht, Boston, London: Kluwer Academic Publishers 247-262

[16]

Necas J., Hlavacek I.. Solution of Signorini’s contact problem in the deformation theory of plasticity by Secant modules method. Appl. Math., 1983, 28: 199-214

[17]

Ou Y. H., Hasanov A., Liu Z. H.. Inverse coefficient problems for nonlinear parabolic differential equations. Acta Math. Sinica (Engl. Ser.), 2008, 24(10): 1617-1624

[18]

Tikhonov A., Arsenin V.. Solutions of Ill-posed Problems, 1977, New York: Wiley

[19]

Zeidler E.. Nonlinear Functional Analysis and Its Applications II A/B, 1990, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/