The infinite dimensional hyperbolic space ℍ does not have property A

Zhaobo Huang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 491 -496.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 491 -496. DOI: 10.1007/s11401-010-0591-6
Article

The infinite dimensional hyperbolic space ℍ does not have property A

Author information +
History +
PDF

Abstract

The author constructs a sequence of cubes in the infinitely dimensional hyperbolic space ℍ which is equi-coarsely equivalent to ℤ2 n. As a corollary, it is proved that the infinitely dimensional hyperbolic space ℍ does not have property A.

Keywords

Coarse geometry / Property A / Hyperbolic space

Cite this article

Download citation ▾
Zhaobo Huang. The infinite dimensional hyperbolic space ℍ does not have property A. Chinese Annals of Mathematics, Series B, 2010, 31(4): 491-496 DOI:10.1007/s11401-010-0591-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dadarlat M., Guentner E.. Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math., 2007, 612: 1-15

[2]

Gromov M.. Asymptotic invariants for infinite groups. Geometric Group Theory, 1991, 2: 1-295

[3]

Guentner E., Kaminker J.. Exactness and the Novikov conjecture. Topology, 2002, 41: 411-418

[4]

Higson N., Roe J.. Amenable group actions and the Novikov conjecture. J. Reine Angew. Math., 2000, 519: 143-153

[5]

Nowak P.. On exactness and isoperimetric properties of discrete groups. J. Funct. Anal., 2007, 234: 323-344

[6]

Nowak P.. Coarsely embeddable metric spaces without property A. J. Funct. Anal., 2007, 252: 126-136

[7]

Ozawa N.. Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris Sér. I Math., 2000, 330: 691-695

[8]

Roe J.. Lectures on coarse geometry, 2003, Providence, RI: A. M. S.

[9]

Tu J. L.. Remarks on Yu’s property A for discrete metric spaces and groups. Bull. Soc. Math. France, 2001, 129(1): 115-139

[10]

Yu G.. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 2000, 139: 201-240

AI Summary AI Mindmap
PDF

344

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/