Finite p-groups in which the number of subgroups of possible order is less than or equal to p 3

Haipeng Qu , Ying Sun , Qinhai Zhang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 497 -506.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 497 -506. DOI: 10.1007/s11401-010-0590-7
Article

Finite p-groups in which the number of subgroups of possible order is less than or equal to p 3

Author information +
History +
PDF

Abstract

In this paper, groups of order p n in which the number of subgroups of possible order is less than or equal to p 3 are classified. It turns out that if p > 2, n ≥ 5, then the classification of groups of order p n in which the number of subgroups of possible order is less than or equal to p 3 and the classification of groups of order p n with a cyclic subgroup of index p 2 are the same.

Keywords

Inner abelian p-groups / Metacyclic p-groups / Groups of order p n with a cyclic subgroup of index p 2 / The number of subgroups

Cite this article

Download citation ▾
Haipeng Qu, Ying Sun, Qinhai Zhang. Finite p-groups in which the number of subgroups of possible order is less than or equal to p 3. Chinese Annals of Mathematics, Series B, 2010, 31(4): 497-506 DOI:10.1007/s11401-010-0590-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berkovich Y.. Groups of Prime Power Order I, 2008, Berlin: Walter de Gruyter

[2]

Kulakoff A.. Über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in p-Gruppen. Math. Ann., 1931, 104: 778-793

[3]

Tuan H. F.. An “Anzahl” theorem of Kulakoff’s type for p-groups. Sci. Rep. Nat. Tsing-Hua Univ. Ser. A., 1948, 5: 182-189

[4]

Berkovich Y.. On the number of subgroups of given order in a finite p-group of exponent p. Proc. Amer. Math. Soc., 1990, 109: 875-879

[5]

Xu M. Y.. Some Problems on Finite p-Groups (in Chinese). Adv. Math., 1985, 14(3): 205-226

[6]

Chen Y. H., Cao H. P.. The complete classification of p-group with p + 1 nontrivial subgroups of each order (in Chinese). J. Southwest Univ., 2007, 29(2): 11-14

[7]

Zhang Q. H., Qu H. P.. On Hua-Tuan’s conjecture. Sci. in China Ser. A, Math., 2009, 52(2): 389-393

[8]

Huppert B.. Endliche Gruppen I, 1967, Berlin: Springer-Verlag

[9]

Taussky O.. Remark on the class field tower. J. London Math. Soc., 1937, 12: 82-85

[10]

Rédei L.. Das schiefe product in der Gruppentheorie. Comm. Math. Helvet, 1947, 20: 225-267

[11]

Hua L. K., Tuan H. F.. Determination of the groups of odd-prime-power order p n which contain a cyclic subgroup of index p 2. Sci. Rep. Nat. Tsing Hua Univ. Ser. A., 1940, 4: 145-151

[12]

Burnside W.. Theory of Groups of Finite Order, 1897, London: Cambridge University Press

[13]

Li, L. L., Qu, H. P. and Chen, G. Y., Central extension of inner abelian p-groups I (in Chinese), Acta Math. Sinica, 53(4), 2010, to appear.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/