Dirichlet forms associated with linear diffusions

Xing Fang , Ping He , Jiangang Ying

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 507 -518.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 507 -518. DOI: 10.1007/s11401-010-0589-0
Article

Dirichlet forms associated with linear diffusions

Author information +
History +
PDF

Abstract

One-dimensional local Dirichlet spaces associated with linear diffusions are studied. The first result is to give a representation for any 1-dim local, irreducible and regular Dirichlet space. The second result is a necessary and sufficient condition for a Dirichlet space to be regular subspace of another Dirichlet space.

Keywords

Symmetrizing measure / Linear diffusion / Dirichlet space / Regular subspace

Cite this article

Download citation ▾
Xing Fang, Ping He, Jiangang Ying. Dirichlet forms associated with linear diffusions. Chinese Annals of Mathematics, Series B, 2010, 31(4): 507-518 DOI:10.1007/s11401-010-0589-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blumental R., Getoor R. K.. Markov Processes and Potential Theory, 1968, New York: Academic Press

[2]

Fang, X., On Regular Dirichlet Spaces of One Dimensional Symmetric Diffusions, Ph. D. Thesis, Zhejiang University, 2004.

[3]

Fang X., Fukushima M., Ying J.. On regular Dirichlet subspaces of H 1(I) and associated diffusions. Osaka, J. Math., 2005, 42: 27-41

[4]

Fang X., He P., Ying J.. Algebraic structure on Dirichlet spaces. Acta Math. Sin. (Engl. Ser.), 2006, 22(3): 723-728

[5]

Fukushima, M., From one Dimensional Diffusions to Symmetric Markov Processes, preprint, 2009.

[6]

Fukushima M., Ying J.. A note on regular Dirichlet subspaces. Proc. Amer. Math. Soc., 2003, 131: 1607-1610

[7]

Fukushima M., Oshima Y., Takeda M.. Dirichlet forms and symmetric Markov processes, 1994, Berlin: Walter de Gruyter

[8]

Itô K.. Essentials of Stochastic Processes. Translations of Mathematical Monographs, 2006, Providence, RI: A. M. S.

[9]

Itô K.. Lectures to Stochastic Processes, 1971, Bombay: Tata Institute

[10]

Itô K., Mckean H. P.. Diffusion Processes and Their Sample Paths, 1965, New York: Springer-Verlag

[11]

Revuz D., Yor M.. Continuous Martingales and Brownian Motion, 1991, New York: Springer-Verlag

[12]

Rogers L. C. G., Williams D.. Diffusions, Markov Processes and Martingales, Vol. 2, 2000, Combridge: Cambridge University Press

[13]

Sharpe M. J.. General Theory of Markov Processes, 1988, New York: Academic Press

[14]

Ying J.. Killing and subordination. Proc. Amer. Math. Soc., 1996, 124(7): 2215-2222

[15]

Ying J., Zhao M. Z.. The uniqueness of symmetrizing measure for Markov processes. Proc. Amer. Math. Soc., 2010, 138(6): 2181-2185

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/