On the equi-nuclearity of Roe algebras of metric spaces

Xiaoman Chen , Benyin Fu , Qin Wang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 519 -528.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 519 -528. DOI: 10.1007/s11401-010-0588-1
Article

On the equi-nuclearity of Roe algebras of metric spaces

Author information +
History +
PDF

Abstract

The authors define the equi-nuclearity of uniform Roe algebras of a family of metric spaces. For a discrete metric space X with bounded geometry which is covered by a family of subspaces {X i} i=1 , if {C u *(X i)} i=1 are equi-nuclear and under some proper gluing conditions, it is proved that C u *(X) is nuclear. Furthermore, it is claimed that in general, the coarse Roe algebra C*(X) is not nuclear.

Keywords

Nuclear C*-algebra / Uniform Roe algebra / Equi-nuclear uniform Roe algebra

Cite this article

Download citation ▾
Xiaoman Chen, Benyin Fu, Qin Wang. On the equi-nuclearity of Roe algebras of metric spaces. Chinese Annals of Mathematics, Series B, 2010, 31(4): 519-528 DOI:10.1007/s11401-010-0588-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brodzki J., Niblo G. A., Wright N. I.. Property A, partial translation structures and uniform embeddings in groups. J. Lond. Math. Soc. (2), 2007, 76(2): 479-497

[2]

Brown N. P., Ozawa N.. C*-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, Vol. 88, 2008, Providence, RI: A. M. S.

[3]

Chen X. M., Wang Q.. Ghost ideal in uniform Roe algebras of coarse spaces. Arch. Math. (Basel), 2005, 84(6): 519-526

[4]

Choi M. D.. The full C*-algebra of the free group on two generators. Pacific J. Math., 1980, 87: 41-48

[5]

Dadarlat M., Guentner E.. Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math., 2007, 612: 1-15

[6]

Higson N., Laforgue V., Skandalis G.. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal., 2002, 12: 330-354

[7]

Lance E. C.. On nuclear C*-algebras. J. Funct. Anal., 1973, 12: 157-176

[8]

Ozawa N.. Amenable actions and exactness for discrete group. C. R. Acad. Sci. Paris Ser. I Math., 2000, 330: 691-695

[9]

Roe J.. Index Theory, Coarse Geometry and Topology of Manifolds. CBMS Regional Conf. Ser. Math., Vol. 90, 1996, Providence, RI: A. M. S.

[10]

Tu J. L.. Remarks on Yu’s Property A for discrete metric spaces and groups. Bull. Soc. Math. France, 2001, 129: 115-139

[11]

Willett, R., Some notes on Property A, 2006. arXiv: math.OA/0612492v2

[12]

Yu G.. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 2000, 1399: 201-240

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/