On smash products of transitive module algebras

Caihong Wang , Shenglin Zhu

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 541 -554.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 541 -554. DOI: 10.1007/s11401-010-0586-3
Article

On smash products of transitive module algebras

Author information +
History +
PDF

Abstract

Let H be a semisimple Hopf algebra over a field of characteristic 0, and A a finite-dimensional transitive H-module algebra with a 1-dimensional ideal. It is proved that the smash product A#H is isomorphic to a full matrix algebra over some right coideal subalgebra N of H. The correspondence between A and such N and the special case A = k(X) of function algebra on a finite set X are considered.

Keywords

Semisimple Hopf algebra / Smash product / Transitive module algebra

Cite this article

Download citation ▾
Caihong Wang, Shenglin Zhu. On smash products of transitive module algebras. Chinese Annals of Mathematics, Series B, 2010, 31(4): 541-554 DOI:10.1007/s11401-010-0586-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blattner R. J., Montgomery S.. A duality theorem for Hopf module algebras. J. Algebra, 1985, 95: 153-172

[2]

Blattner R. J., Montgomery S.. Crossed products and Galois extensions of Hopf algebras. Pacific J. Math., 1989, 137: 37-54

[3]

Harrison D. K.. K 0 of Hopf algebras and enlarged group algebras. Comm. Algebra, 1984, 12(2): 149-198

[4]

Kashina Y.. The classification of semisimple Hopf algebras of dimension 16. J. Algebra, 2000, 232: 617-663

[5]

Koppinen M.. Coideal subalgebras in Hopf algebras: freeness, integrals, smash products. Comm. Algebra, 1993, 21(2): 427-444

[6]

Larson R. G., Radford D. E.. Semisimple cosemisimple Hopf algebras. Amer. J. Math., 1988, 110: 187-195

[7]

Masuoka A.. Freeness of Hopf algebras over coideal subalgebras. Comm. Algebra, 1992, 20(5): 1353-1373

[8]

Radford D. E.. The group of automorphisms of a semisimple Hopf algebra over a field of characteristic 0 is finite. Amer. J. Math., 1990, 112: 331-357

[9]

Sweedler M. E.. Hopf Algebra, 1969, New York: Benjamin

[10]

Van den Bergh, M., A duality theorem for Hopf algebras, Methods in Ring Theory, NATO ASI Series, 129, Reidel, Dordrecht, 1984, 517–522.

[11]

Yan M., Zhu Y.. Stabilizer for Hopf algebra actions. Comm. Algebra, 1998, 26(12): 3885-3898

[12]

Zhu Y.. The dimension of irreducible modules for transitive module algebras. Comm. Algebra, 2001, 29(7): 2877-2886

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/