Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality

Ganghua Yuan , Masahiro Yamamoto

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 555 -578.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (4) : 555 -578. DOI: 10.1007/s11401-010-0585-4
Article

Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality

Author information +
History +
PDF

Abstract

The authors prove Carleman estimates for the Schrödinger equation in Sobolev spaces of negative orders, and use these estimates to prove the uniqueness in the inverse problem of determining L p-potentials. An L 2-level observability inequality and unique continuation results for the Schrödinger equation are also obtained.

Keywords

Schrödinger equation / Carleman estimate / Observability inequality / Inverse problem / Unique continuation

Cite this article

Download citation ▾
Ganghua Yuan, Masahiro Yamamoto. Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality. Chinese Annals of Mathematics, Series B, 2010, 31(4): 555-578 DOI:10.1007/s11401-010-0585-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baudouin L., Mercado A.. An inverse problem for Schrödinger equations with discontinuous main coefficient. Appl. Anal., 2008, 87: 1145-1165

[2]

Baudouin L., Puel J. P.. Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems, 2001, 18: 1537-1554

[3]

Bellassoued M.. Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation. Inverse Problems, 2004, 20: 1033-1052

[4]

Bellassoued M., Yamamoto M.. Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl., 2006, 85: 193-224

[5]

Bukhgeim A. L.. Introduction to the Theory of Inverse Problems, 2000, Utrecht: VSP

[6]

Bukhgeim A. L., Klibanov M. V.. Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl., 1981, 24: 244-247

[7]

Cheng J., Isakov V., Yamamoto M., Zhou Q.. Lipschitz stability in the lateral Cauchy problem for elasticity system. J. Math. Kyoto Univ., 2003, 43: 475-501

[8]

Dehman B., Gérard P., Lebeau G.. Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z., 2006, 254: 729-749

[9]

Hörmander L.. Linear Partial Differential Operators, 1963, Berlin: Springer-Verlag

[10]

Hörmander L.. The Analysis of Partial Differential Operators, III, 1985, Berlin: Springer-Verlag

[11]

Imanuvilov O. Y.. On Carleman estimates for hyperbolic equations. Asymptotic Analysis, 2002, 32: 185-220

[12]

Imanuvilov O. Y., Isakov V., Yamamoto M.. An inverse problem for the dynamical Lamé system with two sets of boundary data. Comm. Pure Appl. Math., 2003, 56: 1366-1382

[13]

Imanuvilov O. Y., Yamamoto M.. Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Problems, 1998, 14: 1229-1245

[14]

Imanuvilov O. Y., Yamamoto M.. Carleman estimate for a parabolic equation in a Sobolev spaces of negative order and its applications. Control of Nonlinear Distributed Parameter Systems, 2001, New York: Dekker 113-137

[15]

Imanuvilov O. Y., Yamamoto M.. Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Problems, 2001, 17: 717-728

[16]

Imanuvilov O. Y., Yamamoto M.. Global uniqueness and stability in determining coefficients of wave equations. Comm. Part. Diff. Eqs., 2001, 26: 1409-1425

[17]

Imanuvilov O. Y., Yamamoto M.. Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci., 2003, 39: 227-274

[18]

Isakov V.. Inverse Source Problems, 1990, Providence, RI: American Mathematical Society

[19]

Isakov V.. Carleman type estimates in an anisotropic case and applications. J. Diff. Eqs., 1993, 105: 217-238

[20]

Isakov V.. Inverse Problems for Partial Differential Equations, 2006, New York: Springer-Verlag

[21]

Isakov V., Yamamoto M.. Carleman estimate with the Neumann boundary condition and its applications to the observability inequality and inverse hyperbolic problems. Contemp. Math., 2000, 268: 191-225

[22]

Kazemi M. A., Klibanov M. V.. Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities. Appl. Anal., 1993, 50: 93-102

[23]

Kenig C. E., Sogge C. D.. A note on unique continuation for Schrödinger’s operator. Proc. Amer. Math. Soc., 1988, 103: 543-546

[24]

Khaĭdarov A.. Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik, 1987, 58: 267-277

[25]

Klibanov M. V.. Inverse problems in the ‘large’ and Carleman bounds. Diff. Eqs., 1984, 20: 755-760

[26]

Klibanov M. V.. Inverse problems and Carleman estimates. Inverse Problems, 1992, 8: 575-596

[27]

Klibanov M. V., Malinsky J.. Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data. Inverse Problems, 1991, 7: 577-595

[28]

Klibanov M. V., Timonov A. A.. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, 2004, Utrecht: VSP

[29]

Lasiecka I., Triggiani R.. Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control. Diff. Int. Eqs., 1992, 5: 521-535

[30]

Lasiecka I., Triggiani R.. Carleman estimates and exact boundary controllability for a system of coupled, nonconservative second-order hyperbolic equations. Partial Differential Equation Methods in Control and Sharp Analysis, 1997, New York: Dekker 215-243

[31]

Lasiecka I., Triggiani R., Zhang X.. Nonconservative wave equations with unobserved Neumann B. C.: global uniqueness and observability in one shot. Contemp. Math., 2000, 268: 227-325

[32]

Lasiecka I., Triggiani R., Zhang X.. Global uniqueness, observability and stabilization of non-conservative Schrödinger equations via pointwise Carleman estimates. J. Inverse Ill-Posed Probl., 2004, 12: 43-123

[33]

Li S., Yamamoto M.. Carleman estimate for Maxwell’s equations in anisotropic media and the observability inequality. J. Phys. Conf. Ser., 2005, 12: 110-115

[34]

Lions J. L., Magenes E.. Non-homogeneous Boundary Value Problems and Applications, 1972, Berlin: Springer-Verlag

[35]

Machtyngier E.. Exact controllability for the Schrödinger equation. SIAM J. Control Optim., 1994, 32: 24-34

[36]

Mercado A., Osses A., Rosier L.. Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Problems, 2008, 24: 015017

[37]

Phung K. D.. Observability and control of Schrodinger equations. SIAM J. Control Optim., 2001, 40: 211-230

[38]

Ruiz A.. Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl., 1992, 71: 445-467

[39]

Runst T., Sickel W.. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, 1996, Berlin: Walter de Gruyter

[40]

Tataru D.. Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Part. Diff. Eqs., 1995, 20: 855-884

[41]

Tataru D.. Carleman estimates and unique continuation for solutions to boundary value problem. J. Math. Pures Appl., 1996, 75: 367-408

[42]

Taylor M. E.. Pseudodifferential Operators and Nonlinear PDE, 1991, Boston: Birkhäuser

[43]

Yamamoto M.. Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl., 1999, 78: 65-98

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/